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keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate
kenntlich gemacht habe.

Berlin,May2011
Volker Seeker





v

Contents

Abstract xiii
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Abstract

In recent years multi-core processors have become ubiquitous in many domains
ranging from embedded systems through general-purpose computing to large-
scale data centers. The design of future parallel computers requires fast and ob-
servable simulation of target architectures running realistic workloads. Aiming
for this goal, a large number of parallel instruction set simulators (ISS) for par-
allel systems have been developed. With different simulation strategies all those
approaches try to bridge the gap between detailed architectural observability and
performance. However, up until now state-of-the-art simulation technology was
not capable to provide the simulation speed required to efficiently support design
space exploration and parallel software development.

This thesis develops the concepts required for efficient multi-core just-in-time (JIT)
dynamic binary translation (DBT) and demonstrates its feasibility and high simu-
lation performance through an implementation in the ARCSIM simulator platform.
ARCSIM is capable of simulating large-scale multi-core configurations with hun-
dreds or even thousands of cores. It does not rely on prior profiling, instrumen-
tation or compilation and works for all multi-threaded binaries implementing the
PTHREAD interface and targeting a state-of-the-art embedded multi-core platform
implementing the ARCOMPACT instruction set architecture (ISA).

The simulator has been evaluated against two standard benchmark suites, EEMBC

MULTIBENCH and SPLASH-2, and is able to achieve speed ups up to 25,307 mil-
lion instructions per second (MIPS) on a 32-core x86 host machine for as many
as 2048 simulated cores while maintaining near-optimal scalability. The results
demonstrate that ARCSIM is even able to outperform an FPGA architecture used
as a physical reference system on a per core basis.
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Überblick

In den vergangenen Jahren haben sich Mehrkernprozessoren in nahezu allen Ge-
bieten der Computertechnik durchgesetzt. Man findet sie in eingebetteten Syste-
men, handelsüblichen Personalcomputern und auch groß angelegten Rechenzen-
tren. Um zukünftige parallel arbeitende Systeme effizient designen zu könnnen,
benötigt man schnelle und detaillierte Simulationstechnologie, die in der Lage ist
realistische Anwendungsaufgaben auszuführen. Mit diesem Hintergrund wurden
viele Befehlssatzsimulatoren entwickelt, die sowohl parallele Architekturen mo-
dellieren, als auch selbst während der Ausführung das volle Potenzial bereits vor-
handener paralleler Strukturen nutzen können. Mit dem Ziel einen Mittelweg zu
finden zwischen einer detaillierten Darstellung des Mikroprozessors und einer ho-
hen Simulationsgeschwindigkeit, kommen die unterschiedlichsten Strategien zur
Anwendung. Bis jetzt jedoch, ist es keinem System möglich genügend Geschwin-
digkeit zu liefern um eine effiziente Entwicklung von Mehrkernprozessoren und
paralleler Software zu unterstützen.

Diese Diplomarbeit zielt darauf ab Konzepte zu entwickeln, die benötigt werden,
um eine effiziente just-in-time dynamic binary translation Technologie für Mehr-
kernsysteme zu unterstützen. Die Durchführbarkeit des Vorhabens wird anhand
der Implementation der genannten Technologie in der ARCSIM Simulator Platform
demonstriert. ARCSIM ist in der Lage groß angelegte Mehrkernkonfigurationen mit
hunderten oder gar tausenden von Kernen zu simulieren. Dazu sind weder vor-
angegangenes Profiling, Instrumentierung oder statische Kompilierung notwen-
dig. Der Simulator kann sämtliche Binaries ausführen, die zur Nutzung mehrerer
Threads das PTHREAD Interface implementieren und für eingebettete state-of-the-
art Mehrkernplattformen kompilieren, die die ARCOMPACT Befehlssatzarchitektur
abbilden.

Der Simulator wurde mittels zweier standard Benchmarksammlungen evaluiert,
EEMBC MULTIBENCH und SPLASH-2, und erreichte dabei Beschleunigungen von
bis zu 25,307 MIPS auf einem 32-Kern x86 Rechner als Ausführungsplatform. Da-
bei war es möglich Konfigurationen mit bis zu 2048 Prozessorkernen zu simulieren
und gleichzeitig geradezu optimale Skalierbarkeit zu erhalten. Die Ergebnisse de-
monstrieren, dass es ARCSIM sogar möglich ist eine FPGA Referenzarchitektur zu
übertreffen.
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Chapter 1

Introduction

Programmable processors are at the heart of many electronic systems and can be
found in application domains ranging from embedded systems through general-
purpose computing to large-scale data centers. Steve Leibson, an experienced de-
sign engineer, engineering manager and technology journalist, said at the Embed-
ded Processor Forum Conference 2001 that more than 90% of all processors are
used in the embedded sector. Also MICROSOFT founder and former chief software
architect Bill Gates refers to that fact [1]. Hence, a lot of embedded program code
is being developed apart from general-purpose software (including desktop appli-
cations and high-performance computing).

In an efficient software and hardware development process, the simulation of a pro-
cessor is a vital step supporting design space exploration, debugging and testing.
Short turn-around times between software and hardware developers are possible,
if the costly and time consuming production - which can easily take several weeks
or even months - of an expensive prototype can be avoided in order to test your
system. Using simulation techniques time-to-market can be significantly reduced
as software programmers can start working, while hardware development is still
in the prototyping stage.

This is where instruction set simulation comes into play. The instruction set ar-
chitecture (ISA) is the boundary between software and processor hardware. It is
the last layer visible to the programmer or compiler writer before the actual elec-
tronic system. An instruction set simulator (ISS) substitutes the complete hardware
layer beneath the ISA boundary and allows simulation of a target architecture on
a host system1 with different characteristics and possibly architecture. In contrast

1The system being simulated is called the target and the existing computer used to perform the
simulation is called the host.
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to real hardware, an ISS can provide detailed architectural and micro-architectural
observability allowing observation of pipeline stages, caches and memory banks
of the simulated target architecture as instructions are processed. This feature is
crucial for debugging and testing.

In recent years a large number of ISS were developed, focusing on different simula-
tion techniques to bridge the gap between detailed architectural observability with
cycle-accurate simulation and performance with pure functional simulation. This
problem is particularly challenging for upcoming multi-core architectures in em-
bedded systems. Early approaches like RSIM [2] or SIMPLESCALAR [3] implemen-
tations are simulating multi-core targets in a sequential manner, not fully utilizing
available multi-core host systems. Later simulation tools like PARALLEL EMBRA [4]
or GRAPHITE [5] are able to achieve that by simulating multi-core systems on a
multi-core host or even distributing the target architecture onto multiple machines.
Despite this, simulation of multi-core targets is still either slow or does not scale
well for architectures with a large number of cores.

This thesis introduces ARCSIM, a target-adaptable instruction set simulator with
extensive support for the ARCOMPACT ISA [6]. It is a full-system simulator
(see 3.2), implementing the processor, its memory sub-system including MMU, and
sufficient interrupt-driven peripherals like a screen or terminal I/O. This simula-
tor uses parallel just-in-time dynamic binary translation (JIT DBT) techniques to
translate frequently executed target program regions, also called traces, in order to
accelerate simulation. At the same time ARCSIM is capable of augmenting JIT gen-
erated code with a detailed cycle-accurate processor model, without prior profiling,
instrumentation or compilation. Using this techniques ARCSIM is able to even ex-
ceed the native execution performance of speed-optimized silicon implementations
of single-core target architectures [7]. However, due to its inherent complexity, up
until now JIT DBT technology has not been available for multi-core simulation. To
efficiently support hardware and software research with a simulator that is capable
of simulating a system with hundreds or even thousands of cores, a rate of 1000
to 10,000 MIPS is necessary [8]. The thesis presents how the multi-core version of
ARCSIM developed in this study scales up to 2048 target processors whilst exhibit-
ing minimal and near constant overhead.

1.1 Contributions

The main contributions are twofold: The first part concerns software design as-
pects which were applied in order to provide a scalable multi-core instruction set
simulation methodology by extending established single-core JIT DBT approaches
to effectively exploit the available hardware parallelism of the simulation host. This
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is done by creating a thread for each simulated core which enables the simulator
to execute the target application in parallel, whereas a communication system to-
gether with a controlling main thread is responsible for synchronization tasks.

The second part focuses on various optimizations maintaining high performance
and detailed observability utilizing JIT translation mechanics. The key idea is that
each processor thread feeds work items for native code translation to a parallel JIT

compilation task farm shared among all CPU threads. Combined with private first-
level caches and a shared second level cache for recently translated and executed
native code, detection and elimination of duplicate work items in the translation
work queue and an efficient low-level implementation for atomic exchange opera-
tions, a highly scalable multi-core simulator was constructed that provides faster-
than-FPGA simulation speeds and scales favorably up to 2048 cores.

The following list summarizes the main contributions:

• The methodology to extend a single-core simulator to a scalable multi-core
ISS includes:

– Splitting the single threaded main loop into system and processor
threads responsible for multiple cores

– Introducing an event communication system to control running proces-
sor threads

– Synchronizing shared resources and making them available for multiple
simultaneously running cores

• Optimizations of the JIT DBT translation mechanic for a parallel multi-core
simulator include:

– A centralized parallel task farm for translating frequently used target
code traces

– A multi-level cache hierarchy for JIT-compiled code
– Detection and Elimination of duplicate work items in the translation

work queue
– An efficient low-level implementation for atomic exchange operations

The simulation methodology developed in this thesis has been evaluated against
the industry-standard EEMBC MULTIBENCH and SPLASH-2 benchmark suites. The
functional ISS models homogeneous multi-core configurations composed of EN-
CORE (see 3.3.2) cores, which implement the ARCOMPACT ISA. On a 32-core x86
host machine simulation rates up to 25,307 MIPS for as many as 2048 target pro-
cessors are demonstrated. Across all benchmarks ARCSIM’s JIT DBT simulation
approach achieves an average simulation performance of 11,797 MIPS (for 64 sim-
ulated cores) and outperforms an equivalent system implemented in FPGA.
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1.2 Overview

The remainder of this work is organized as follows: Chapter 2 discusses research
work related to this thesis. This is followed by a detailed background description in
Chapter 3, where an overview is presented about the functionality of an instruction
set architecture, general instruction set simulation approaches, the ARCSIM simula-
tor project, common pthread programming techniques and the benchmarks used
for this study. The methodology in Chapter 4 covers in detail the proposed parallel
simulation technology. It is followed by a presentation of the results for the empir-
ical evaluation in Chapter 5. Finally, Chapter 6 summarizes the thesis and gives an
outlook to future work.
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Chapter 2

Related Work

The instruction set simulation of single-core systems already has a wide variety
of implementation approaches, of which the most important ones are described
in detail in Section 3.2.2. Therefore, also a lot of related research work exists con-
cerning instruction set simulation for multiple cores. To not exceed the focus of
this thesis, this chapter only presents the most relevant approaches in software and
FPGA-based multi-core simulation.

The related work section starts with an overview about studies concerning software
based approaches which are capable of simulating or emulating multi-processor
systems in a sequential manner. The second part covers parallel software based
simulation of parallel architectures, and the last part introduces the most relevant
and recent work to FPGA-based instruction set simulation.

2.1 Sequential Simulation of Parallel Systems

Early approaches to efficient simulation of multi-core systems date back to the
1990s. However, those simulators/emulators did not run multiple cores in par-
allel but executed them sequentially on the host machine. The following explains
some of those works in detail:

RPPT [9] (Rice Parallel Processing Testbed) is a simulation system based on a tech-
nique called execution-driven simulation. The testbed was designed to inves-
tigate performance issues concerning the execution of concurrent programs
on parallel computing systems and to evaluate the accuracy and efficiency of
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this technique.

In execution-driven simulation, execution of the program and the simulation
model for the architecture are interleaved. A preceding profiling of the target
source calculates instruction counts and timings for each basic block. This
information is then added to the source program in the form of a few in-
structions on each basic block boundary that increment the cycle count by the
amount of the estimate for that block. During the simulation, the modified
target application is then executed and statistics are updated automatically.

Multiple processors are simulated sequentially. The target program executes
until an interaction point occurs, where the current process needs synchro-
nization with a different one. The current process is then delayed and another
processor continues with its work.

RSIM [2] is a simulator for shared-memory multi-core systems based on the RPPT,
whereas its focus lies on modeling instruction-level parallelism (ILP). Pro-
cessor architectures aggressively exploiting ILP have the potential to reduce
memory read stalls by overlapping read latency with other operations. Stud-
ies with RSIM showed, that simulation of ILP is crucial to get proper simula-
tion results for architectures using this technique.

SIMPLESCALAR [3] introduces a multi-core simulator built with the the SIM-
PLESCALAR tool set, which allows users to build interpretive simulators
(see 3.2.2) for different architectures, also called SIMPLESCALAR modules.
SYSTEMC is used to combine different architecture simulators in order to inte-
grate heterogeneous processor architecture models with only slight modifica-
tions. Different SIMPLESCALAR modules are then executed in a round robin
fashion, whereas the shared-memory is used as the inter-core communication
media.

QEMU [10] is a full-system machine emulator relying on dynamic binary transla-
tion (see 3.2.2). It is capable of emulating multi-core targets, but uses a single
thread to emulate all the virtual CPUs and hardware. However, an exten-
sion called COREEMU was implemented [11], which is able to run parallel
systems in a parallel way. Each core uses a separate instance of the QEMU bi-
nary translation engine, with a thin library layer to handle the inter-core and
device communication and synchronization.

Although those instruction set simulators together with SIMOS [12] and SIMICS [13]
are capable of simulating/emulating multi-core architectures, they do not work in
parallel1. Therefore, those systems force a single host core to perform the work of
many target cores. It is hardly possible to achieve higher speed-ups that way in
comparison to a simulator utilizing all cores of the host system as ARCSIM does.

1COREEMU handles multi-core architectures in a parallel way. But in contrast to ARCSIM, it emu-
lates the target and therefore provides no precise architectural observability.
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2.2 Software Based Parallel Simulation of Parallel Systems

A large number of parallel simulators for parallel target architectures have been
developed over the last two decades: SIMFLEX [14], GEMS [15], COTSON [16],
BIGSIM [17], FASTMP [18], SLACKSIM [19], PCASIM [20], Wisconsin Wind Tun-
nel (WWT) [21], Wisconsin Wind Tunnel II (WWT II) [22], and those described by
Chidester and George [23], and Penry et al. [24]. Some of them also use dynamic
binary translation techniques, simulate shared memory systems or are able to run
pthread target applications without source code modifications. The following
lists in detail examples of software based parallel multi-core simulators and dis-
cusses what they have in common with ARCSIM and where ARCSIM surpasses
them or focuses on a different aspect.

SIMFLEX [14], GEMS [15] and COTSON [16] are all approaches using a preset
simulation framework to simulate the functional behavior of multi-core archi-
tectures and add their own components to model the timing aspect. Whereas
GEMS and SIMFLEX are based on the full-system simulator SIMICS, COTSON

uses AMD’s SIMNOW! simulator.

GEMS implements a multiprocessor memory system, which models caches
and memory banks with corresponding controllers, and an interconnection
network, which is able to provide detailed timings for inter-component com-
munications. A processor timing model runs along with SIMICS’ functional
simulation and drives the functional execution of individual instructions by
providing proper timings. However, the effort to get precise architectural ob-
servability results in low performance. SIMFLEX is a lot faster since it uses
SMARTS’ statistical sampling approach (see 3.2.2) as a timing model exten-
sion, but therefore does not observe the entire architectural state. COTSON is
also relying on statistical sampling to provide timing information alongside
with functional simulation by AMD’s SIMNOW! simulator. It therefore suf-
fers from the same trade-off between architectural observability and speed as
SIMFLEX does.

FASTMP [18], BIGSIM [17], WWT [21] and WWT II [22] are parallel multi-core
simulators, which in contrast to ARCSIM do not fully support a shared
memory system or only with prior modifications of the target application.

FASTMP increases the simulation performance of multi-core architectures by
using statistical methods. A single simulation run only collects detailed traffic
information for a subset of the simulated cores, whereas the other remaining
cores’ behavior is estimated from that collected data set. This approach, how-
ever, assumes workloads which are homogeneous for all participating cores
and supports only distributed memory target architectures. The same limita-
tions affect BIGSIM, which is a parallel simulator that is capable of predicting
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performance for large multi-core systems with tens of thousands of proces-
sors.

The Wisconsin Wind Tunnel (WWT) is one of the earliest parallel simulators.
It runs parallel shared-memory target programs on a non shared-memory
parallel host. WWT, like its successor WWT II, uses a direct execution mech-
anism where the majority of an application is executed on native hardware,
with the simulator paying special attention only to those events that do not
match the target architecture. The WWT runs on a THINKING MACHINE CM-
5 and traps on each cache miss, which is simulated in a shared virtual mem-
ory. However, WWT is restricted to the CM-5 machine and requires target
applications to use an explicit interface for shared memory. The Wisconsin
Wind Tunnel II aims at creating a portable multi-core simulator. WWT II only
simulates the target memory system and modifies the target source code to
get remaining simulation statistics. Additional code is added to each basic
block of the target program that updates the target execution time and target
code modifications are necessary to explicitly allocate shared memory blocks.
ARCSIM models a complete target system including peripheral devices, im-
plements a transparent shared memory model and does not require any target
code changes.

PARALLEL EMBRA [4] is part of the PARALLEL SIMOS complete machine simula-
tor. Like ARCSIM, it is a parallel, functional simulator using a binary trans-
lation mechanic, which supports complete machine simulation of shared-
memory multiprocessors. PARALLEL EMBRA takes an aggressive approach
to parallel simulation, where nearly every module of the simulator can oper-
ate in parallel. The simulated target machine is divided into pieces which the
simulator executes in parallel, at the granularity of the underlying host hard-
ware. For example, a 16-processor simulation with 2 GB of memory could
be divided across 4 real hardware nodes by assigning 4 simulated processors
and 512 MB of simulated memory to each node. Despite this high level of
parallelization, PARALLEL EMBRA relies on the underlying shared memory
system for synchronization and runs without cycle synchronization across
virtual processors. As a result it executes workloads non-deterministically
but preserves overall correctness, since memory events cannot be reordered
across virtual processors. While PARALLEL EMBRA shares its use of binary
translation with ARCSIM it lacks its scalability and parallel JIT translation fa-
cility.

P-MAMBO [25] and MALSIM [26] are parallel multi-core simulators which result,
like ARCSIM, from parallelizing sequential full-system software simulators.
P-MAMBO is based on MAMBO, IBM’s full-system simulator which models
POWERPC systems and MALSIM extends the SIMPLESCALAR tool kit men-
tioned above. Whereas P-MAMBO aims to produce a fast functional simulator
by extending a binary translation based emulation mode, MALSIM utilizes a
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multi-core host with a funtional pthread simulation model to support multi-
programmed and multi-threaded workloads. Published results, however, in-
clude a speed-up of up to 3.8 for a 4-way parallel simulation with P-MAMBO

and MALSIM has only been evaluated for workloads comprising up to 16
threads. Despite some conceptual similarities with these works this thesis
aims at larger multi-core configurations where scalability is a major concern.

A DBT based simulator [27] for the general purpose tiled processor RAW was de-
veloped in Cambridge. This work aims at exploiting parallelism in a tiled
processor to accelerate the execution of a single-threaded x86 application. It
focuses on three mechanisms to reach that goal: Like ARCSIM, this simulator
uses parallel dynamic binary translation but instead of hot spot optimiza-
tion, a speculative algorithm is applied which translates a predicted program
execution path in advance. The second mechanism exploits the underlying
hardware to implement pipelining which increases the throughput of needed
resources like memory or caches. Static and dynamic virtual architecture
reconfiguration is the third technique. The emulated virtual architecture is
configured statically for the executed binary and reconfigured at runtime de-
pending on the current application phase. This means that, for example, in
the applications start up phase more processor tiles are dedicated for transla-
tion and in the end more for the memory system. However, this work does
not attempt to simulate a multi-core target platform.

ARMN [28] is a multiprocessor cycle-accurate simulator which can simulate a clus-
ter of homogeneous ARM processor cores with support for various intercon-
nect topologies, such as mesh, torus and star shape. Whilst this provides
flexibility, the performance of ARMN is very low (approx. 10k instructions
per second) and, thus, its suitability for both HW design space exploration
and SW development is limited.

GRAPHITE [5] is a distributed parallel simulator for tiled multi-core architectures
that combines direct execution, seamless multi-core and multi-machine dis-
tribution and lax synchronization. It also aims to simulate larger multi-core
configurations and has been demonstrated to simulate target architectures
containing up to 1024 cores on ten 8-core servers. GRAPHITE’s multi-core
simulation infrastructure is most relevant for this thesis.

With its threading infrastructure GRAPHITE is capable of accelerating simu-
lations by distributing them across multiple commodity Linux machines. For
a multi-threaded target application it maintains the illusion that all of the
threads are running in a single process with a single shared address space.
This allows the simulator to run off-the-shelf pthread applications with no
source code modification. Application threads are executed under a dynamic
binary instrumentor (currently PIN) which rewrites instructions to generate
events at key points. These events cause traps into GRAPHITE’s backend
which contains the compute core, memory, and network modeling modules.
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Instructions and events from the core, network and memory subsystem func-
tional models are passed to analytical timing models that update individual
local clocks in each core in order to maintain proper timings for the simu-
lated architecture. However, to reduce the time wasted on synchronization,
GRAPHITE does not strictly enforce the ordering of all events in the system as
they would have in the simulated target.

In contrast, the ARCSIM simulator uses DBT to implement any ISA (currently
ARCOMPACT), which can also be different from the target system’s ISA. In
addition, the primary design goal of this study’s simulator has been highest
simulation throughput as showcased by the parallel JIT task farm contained
within ARCSIM. As a result speed-ups over native execution were achieved
for many multi-core configurations, whereas GRAPHITE suffers up to 4007×
slowdown.

A simulator proposed by the HP LABS [29] simulates large shared-memory
multi-core configurations on a single host. The basic idea is to use thread-
level parallelism in the software system and translate it into core-level
parallelism in the simulated world.

An existing full-system simulator is first augmented to identify and separate
the instruction streams belonging to the different software threads. Then,
the simulator dynamically maps each instruction flow to the corresponding
core of the target multi-core architecture. The framework detects necessary
thread synchronization spots and implements the corresponding semantics
by properly delaying the application threads that must wait. Since the buffer-
ing necessary to synchronize separated thread instruction streams can eas-
ily consume large amounts of memory, an instruction compression technique
and a scheduling feedback mechanism are applied. When the local buffer of
a thread runs out of instructions its priority is raised. It is filled with new
instructions and the waiting period of related threads is decreased.

This approach treats the functional simulator as a monolithic block, thus re-
quires an intermediate step for de-interleaving instructions belonging to dif-
ferent application threads. ARCSIM does not require this costly preprocessing
step, but its functional simulator explicitly maintains parallel threads for the
CPUs of the target system.

2.3 FPGA-based Parallel Simulation of Parallel Systems

Section 3.2.2 will describe FPGA-based instruction set simulation in detail, but as a
quick summary: one can generally distinguish between two approaches to FPGA-
based multi-core simulation. The first approach utilizes FPGA technology for rapid
prototyping, but still relies on a detailed implementation of the target platform,
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whereas the second approach seeks to speed up performance modeling through
the combined implementation of a functional simulator and a timing model on the
FPGA fabric. In the following, examples for this latter approach are discussed.

RAMP GOLD [30, 31] is a state-of-the-art FPGA-based “many-core simulator” sup-
porting up to 64 cores. The structure of the simulator is partitioned into
a functional and a timing model, whereas both parts are synthesized onto
the FPGA board. In functional-only mode, RAMP GOLD achieves a full sim-
ulator throughput of up to 100 MIPS when the number of target cores can
cover the functional pipeline depth of 16. For fewer target cores (and non-
synthetic workloads), the fraction of peak performance achieved is propor-
tionally lower. In comparison to the 25,307 MIPS peak performance of ARC-
SIM’s software-only simulation approach (based on an ISA of comparable
complexity and similar functional-only simulation) the performance of the
FPGA architecture simulation is more than disappointing. Other approaches
with RAMP [32] had similar results.

FAST [33, 34] and PROTOFLEX [35] are also FPGA accelerated simulators which
aim at partitioning simulator functionalities. Like RAMP GOLD, FAST par-
titions timing and functional mechanics into two different models. However,
only the timing model is running on an FPGA platform whereas the func-
tional model is implemented in software. PROTOFLEX is not a specific in-
stance of simulation infrastructure but a set of practical approaches for devel-
oping FPGA-accelerated simulators. An actual instance is the BLUESPARC
simulator that incorporates the two key concepts proposed by PROTOFLEX.
It uses hybrid simulation like FAST, where parts of the architecture are hard-
ware and others software, but also goes on step further and uses transplanting.
Transplanting is a technique where only frequent behavior of a component is
synthesized for the FPGA and remaining functions are rerouted to a software
algorithm. For example, an FPGA CPU component would only implement
the subset of the most frequently encountered instructions. The remaining
ones are executed by a software model. Since both simulators also achieve
only speed-ups similar to the FPGA approaches mentioned above or even
less, they can not compete with ARCSIM in terms of multi-core simulation
performance.
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Chapter 3

Background

In Chapter 3, the first Section 3.1 will give an overview of how a processor interacts
with executed software using an instruction set. Section 3.2 explains how instruc-
tion set benefits are used to build different types of processor simulators that help
developers designing hard- and software. Afterwards, Section 3.3 introduces the
ARCSIM instruction set simulator used in this study and Section 3.4 and 3.5 give an
overview about common multi-core programming techniques as well as executed
benchmarks.

3.1 Instruction Set Architecture

Since the central part of an embedded system is its processor, how is it possible
for an embedded application to access the processor’s functionality? How does
software tell the CPU what to do? The boundary between software and processor
hardware is the instruction set architecture. It is the last layer visible to the program-
mer or compiler writer before the actual electronic system. This layer provides a
set of instructions, which can be interpreted by the CPU hardware and therefore
directly address the underlying micro-architectural pipeline. A black bar in the
middle of Figure 3.1 indicates the ISA, whereas the upper blue part holds different
software layers and the lower red part defines the hardware layer.

The lower red layers beneath the ISA are called the micro-architecture of the pro-
cessor. It contains the Circuit Design Layer at the bottom, which consists of elec-
trical wires, transistors, and resistors combined into flip-flops. Those components
are arranged and composed to blocks of specific electronic circuitry like adders,
multiplexers, counters, registers, or ALUs. Together they form the Digital Design
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Figure 3.1: Instruction set architecture as boundary between hard- and software.

Layer, which defines the processor’s underlying logical structure. Touching the
ISA boundary is a layer for Instruction Set Processing and IO-devices. All incom-
ing instructions are decoded and sequenced to commands in some kind of cor-
responding Register Transfer Layer (RTL), which directly addresses the physical
micro-architecture of the processor or attached devices.

The ISA as a programming interface hides all micro-architectural information about
the processor from the software developer. Since developing applications on In-
struction Set level is complicated and inefficient, this level is hidden again by high
level languages like C or C++, libraries and functionalities provided by the operat-
ing system, as seen in the top half of Figure 3.1. However, compiler writers, for ex-
ample, need to use the ISA directly. This information hiding mechanism simplifies
the software development process and makes micro-architecture interchangeable.

Hence, a micro-architecture is a specific implementation of an ISA, which is then
referred to as the processor’s architecture. Various ways of implementing an in-
struction set give different trade-offs between cost, performance, power consump-
tion, size, etc. Processors can differ in their micro-architecture but still have the
same architecture. A good example would be INTEL and AMD. Both processor
types implement the x86 architecture but have totally different underlying micro-
architecture.
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3.1.1 ISA Classification

The most basic differentiation between ISAs is the type of internal storage used for
instruction operands in a processor. Typically the following three major types are
used [36]:

Stack Architecture All instruction operands are implicitly at the top one or two
positions of a stack located in the memory. Special instructions like PUSH A
or POP B are used to load operands to the stack and store them back into
memory. This architecture benefits from short instructions and few options,
which simplifies compiler writing. Though a major disadvantage is that a
lot of memory accesses are required to get operands to the stack. The stack
therefore becomes a huge bottleneck.

Accumulator Architecture One of the instruction operands is implicitly the accu-
mulator. The accumulator is always used to store the calculation result. This
architecture is easier to implement than the stack architecture and has also
small instructions, however it still needs a lot of memory accesses.

General Purpose Register (GPR) Architecture Instruction operands are stored ei-
ther in memory or in registers. A register can be used for anything like hold-
ing operands or temporary values. GPR is the most commonly used architec-
ture these days because of two major advantages. At first, register access is
much faster than memory access and using registers to hold variables reduces
memory traffic additionally. The second big advantage is the possibility to ef-
ficiently use registers for compiler work. However, this flexibility and big
amount of options makes compiler design quite complicated and results in
long instructions.

Table 3.1 shows an example for the mentioned architecture types defining a simple
ADD operation: A + B = C

Stack Accumulator GPR (2-op) GPR (3-op)
PUSH A LOAD A LOAD R1,A ADD A,B,C
PUSH B ADD B ADD R1,B
ADD STORE C STORE R1,C
POP C

Table 3.1: ADD operation displayed for different operand storage architectures.

As said before, most modern CPUs like PENTIUM, MIPS, SPARC, ALPHA or POW-
ERPC implement the GPR type. This architecture can be further classified into num-
ber of operands per ALU instruction, which varies between two and three, and
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number of operands referring directly to memory locations, which goes from zero
up to three references. The more operands an ALU instructions has, the longer in-
structions get and the more memory needs to be used. Many memory references
in a single instruction reduce the total instruction count in a program but result
in more memory access during program execution. Therefore, architectures with
three possible memory references per instructions are not common today.

Available GPR ISAs can be separated into two main groups: Complex instruction set
computing (CISC) and Reduced instruction set computing (RISC). CISC aims for com-
plex but powerful instructions, which can vary in size and operand count. This is
supposed to produce compact and fast code. However, decoding CISC instructions
on the processor needs a lot of work and is mostly slow. It is done by micro-code
running on the processor. A CISC machine does not have many registers, since
register access is mostly encoded into the instructions.

The RISC strategy aims for a reduced instruction set with a standard length and
simple operations. This results in longer code, but faster decoding times, since
RISC instruction decoding is mostly hard wired. Simple instructions make this
architecture flexible enough to use a large amount of registers, which reduces slow
memory access. The most significant advantage of RISC is an efficient usage of
the processor’s instruction pipeline. Every instruction needs multiple stages to be
executed. They are basically instruction fetch from memory, instruction decode,
instruction execute and writing back the results. A pipeline can handle multiple
instructions at the same time, where an instruction can start with its first stage
while other instructions are still in a different one. Using RISC instructions with
a standard length enables efficient and short pipelines, whereas executing CISC

instructions with various sizes efficiently in a pipeline is a lot more complex. In
addition, a short pipeline is only an advantage if instruction execution can be done
in a few cycles. This is easy for simple RISC instructions but not always possible
for powerful but complex CISC ones.

A third group is very long instruction word architecture (VLIW). This strategy takes
advantage of instruction level parallelism. The compiler analyzes the program for
instructions that can be executed in parallel. These are then grouped and executed
at the same time. The group size depends on available execution components.
However, if program operations have interdependencies, it can happen that a sin-
gle instruction needs to be executed by itself, which reduces efficiency.
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(a) Target simulation... (b) ...on a host system

Figure 3.2: ISS as simulation system for a target application on a different host system.

3.2 Instruction Set Simulator

Simulation is a method used in scientific and engineering areas that is based on
the idea of building a model of a system in order to perform experiments on this
model. Provided that the model is reasonably similar to the system being modeled,
the results from the simulation experiments can be used to predict the behavior of
the real system.

The previous section described how the ISA hides the system hardware from the
programmer. This provides the possibility of interchanging executing hardware
with other hardware or even against software. As long as instructions used by the
running application are interpreted correctly and proper results are delivered, no
difference will be recognized. This is where instruction set simulation comes into
play. A pure ISS only refers to the simulation of a micro-processor. In order to take
full advantage of all simulation benefits, additional hardware simulation is neces-
sary. A full-system simulator encompasses all parts of a computer system. Including
the processor core, its peripheral devices, memories, and network connections [37].
This enables the simulation of realistic work loads which fully utilize a computer
system. In the following text ISS will refer to a full-system simulator.

Figure 3.2a shows how an ISS substitutes the complete hardware layer beneath
the ISA boundary. In order to run the system displayed in Figure 3.2a, however,
additional host hardware executing simulator and target application is required.
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Figure 3.2b depicts relations between target application, ISS and host system. Target
always refers to the system being simulated, whereas Host indicates the hardware
the simulation is running on. Consider the following example for using hardware
simulation:

Anti-lock braking system The target could be an embedded system, for example,
the controller of an anti-lock braking system in a car. It consists of a micro-
processor, wheel speed sensors and hydraulic valves to access the brakes. The
target application (blue part at the top of Figure 3.2b) in our case is monitoring
the rotational speed of each wheel and actuates the valves, if it detects a wheel
rotating significantly slower than the others.

For developing corresponding control software it would be very complicated
to drive around in a car all time in order to get proper test signals. Even a test
board with connected peripherals could be to complex in the early states of
development. Hence, processor and IO-devices are simulated by an ISS (green
part in the middle of Figure 3.2b). The ISS is running on a common computer
terminal in the lab and executes the target application. The computer terminal
is called the host system (red part at the bottom of Figure 3.2b).

This short example shows how it is possible to create a virtual simulation en-
vironment. In the case of micro-processors, using an ISS enables developers
to run an application written for a specific target ISA on a host system sup-
porting a totally different one.

Working with a software simulation instead of a real hardware system has a variety
of advantages [37]. Section 3.2.1 will point out these advantages for the example of
an ISS. There are different types of ISS, which provide models of the target micro-
architecture of varying degrees of detail and abstraction. But as mentioned before,
no problems will arise as long as the target application does not recognize a differ-
ence. Section 3.2.2 classifies those types in more detail.

3.2.1 ISS Advantages

ISS provide detailed architectural observability. Developers can observe machine
state, registers and memory at any time and collect statistical information such as
cycle and instruction counts or cache accesses. This observability enables early ex-
ploration of the architecture design space, which means design errors can be found
and corrected quickly without expensive and time consuming overhead of pro-
ducing a hardware prototype. If the design is worked out and a prototype has
been produced, Hardware/Software co-simulation can be used to verify it, using
the simulator as a software reference model. This is done by running hardware
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(a) S60 Simulator (b) IPhone Simulator

Figure 3.3: An example for popular simulators are simulation environments for mobile
phone development like Nokias S60 simulator or Apples IPhone simulator.

and software in lock-step mode and evaluating the machine state of both systems
against each other. Not only does the hardware development of the processor ben-
efit from virtual prototypes, but software development is also simplified.

Software teams can start early with developing compilers or applications for the
new system. If a design issue is found, faster turn-around times between hard- and
software development can be achieved thanks to quick adaptation of the simulated
reference model. Because software development can start while hardware is still
in design phase, time-to-market speeds up significantly by reducing the overall de-
velopment time for new micro-processors. High configurability and controllability
help when debugging a system in development. Any machine configuration can
be used, unconstrained by available physical hardware, and the execution of the
simulation can be controlled arbitrarily, disturbed, stopped and started. It is also
possible to inject faults on purpose in order to observe the system’s behavior con-
cerning error detection and correction methods like interrupts and exceptions.

Once the hardware design is stable and no longer in prototype stage, the simula-
tion model really becomes virtual hardware. Virtual systems have a much higher
availability than real hardware boards, which simplifies the test and maintenance
process. Creating a new processor is now just a matter of copying the setup. There
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is no need to procure hardware boards, which sometimes is not even possible any-
more when it comes to older computer systems. Two examples of simulators being
used in the development process can be seen in Figure 3.3.

As this section shows, ISS have a large number of benefits, which make them pop-
ular tools among both embedded hardware and software developers. However,
there are also disadvantages. The most significant one is the trade-off between sim-
ulation speed and architectural observability. Simulating micro-architecture of a
processor on a very low level like register-transfer-level (RTL), for example, is time
consuming and sometimes too slow to be used efficiently. Typically those cycle-
accurate simulators operate at 20 K - 100 K instructions per second. On the other
hand a faster functional simulation, which operates at 200 - 400 million instructions
per second [38], does not always provide enough details for proper debugging. The
following section depicts different strategies to optimize this trade-off.

3.2.2 ISS Classification

To achieve the best trade-off between speed and architectural observability differ-
ent simulation strategies have been developed. Though today’s simulators focus
on a specific strategy, often multiple simulation modes are supported. Instruction
set simulation can basically be classified into three different types:

• Interpretive simulation

• Compiled simulation

• FPGA based simulation

Depending on the level of detail being simulated, an ISS can have a timing model
that simulates the micro-architectural structures affecting timing and resource ar-
bitration. Hence, a second way of classification would be the following:

• Cycle-accurate: simulation with detailed timing model

• Instruction-accurate: pure functional simulation without timing model

• Cycle-approximate: hybrid functional and timing simulation
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Interpretive Simulation Interpretive simulation is a very basic and straight-
forward simulation strategy, which is either working close to the actual micro-
architecture or on a fast functional level. It simulates single stages corresponding
to the instruction set processing layer of the processor, such as instruction fetch,
instruction decode and instruction execute. All instructions of the target program
along the execution path are fetched from the simulator’s memory, decoded by
using the opcode and interpreted by a corresponding routine. This routine exe-
cutes the instruction’s functionality and updates a data structure representing the
state of the target processor. Registers, memory and the context of IO-devices are
updated as instructions commit, thereby maintaining a precise view of the target
system. Faithfully processing instruction by instruction makes this strategy quite
flexible considering code modifications at runtime. They can result from either
self-modifying code or manual changes done at debugging breakpoints.

Even though interpretive simulation is relatively straight-forward to implement,
provides good observability and is flexible, it is rather slow. Most interpretive
simulators are either written in a common high level language like C. Hence, in-
terpreting a single target instruction results in approximately 10 to 100 host in-
structions [39]. Performing fetch, decode and execute for all theses additional in-
structions results in a significant slow-down over native execution. That means the
virtual system is much slower than a real hardware simulation would be. Never-
theless, building software simulations is still faster than building hardware boards
(see Section 3.2.1).

An example for interpretive simulation is the SIMPLESCALAR [40, 41] simulator.
Implemented in 1992 as a first version at the University of Wisconsin, it is now
available as version 3.0, providing a flexible infrastructure for building interpre-
tive simulators for different target systems. The SIMPLESCALAR licensing model
permits users to extend the SIMPLESCALAR tools. Hence, multiple modifications
to the tool set have been developed, for example, an extension called DYNAMIC

SIMPLESCALAR (DSS) [42]. DSS simulates Java programs running on a JVM and
supports, among other new features, a dynamic just-in-time compilation strategy
as described in the next section.

Compiled Simulation The basic idea of compiled simulation is to reduce inter-
pretive runtime overhead by removing statically executed fetch and decode stages
[44]. Each target machine instruction is translated to a series of host machine in-
structions, which represent corresponding simulation methods. These methods
manipulate the data structure representing the processor’s state, and are therefore
the equivalent to the execution stage. Instead of executing fetch and decode for the
same code multiple times, translation work is done once; Either statically during
start-up phase of the simulator or dynamically at runtime for repeatedly executed
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Figure 3.4: Figure 1 (a) shows the behavior of the interpretive ISS. (b) and (c) show the
compilation process of the compiled ISS with binary translation and intermediate code. [43]

code portions like loops.

In addition to reducing runtime overhead, redundant code can be eliminated
through host compiler optimizations. There are two compilation schemes [45]:

• The target binary is translated directly by replacing target instructions with
corresponding host instructions.

• Intermediate code is used by going through high-level language generation
and compilation stages.

Figure 3.4 (a) shows an interpretive process, (b) binary translation and (c) uses in-
termediate code. Binary translation is fast but the translator is more complex and
less portable between hosts. Using intermediate code in a high-level language like
C is more flexible concerning the host machine. It also benefits from using C com-
piler optimizations. However, due to longer translation times, losses in simulation
speed are possible.
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Static Compilation Once a target program translation is done, its simulation is
much faster than the interpretive strategy. But there are limitations:

• The static compiled method has a considerable start-up cost due to the trans-
lation of the target program. If a large program is used for simulation only
once before it needs to be compiled again, interpretive simulation is probably
the better choice.

• The static compilation method is less flexible than interpretive simulation.
Since the static compiled method assumes that the complete program code is
known before the simulation starts, it cannot support dynamic code that is
not predictable prior to runtime. For example, external memory code, self-
modifying code and dynamic program code provided by operating systems,
external devices or dynamically loaded libraries cannot be addressed by a
static compiled ISS.

An example of a static compiled ISS is OBSIM introduced in [46] and OBSIM2 for
multi-processor simulation introduced in [43]. Those papers also provide a good
overview of compiled ISS. OBSIM aims to reduce static compilation drawbacks by
providing more flexibility and decreasing start-up cost. Key to this improvement is
the usage of target object files in Executable and Linkable Format (ELF) as simulator
input instead of binaries.

Dynamic Compilation Dynamic compilation combines interpretive and com-
piled simulation techniques, maintaining both flexibility and high simulation
speeds [38]. This strategy uses statistical methods to detect frequently executed
parts of the target programs execution path (also called traces). In the beginning all
instructions are executed interpretively. If the execution count for a trace reaches
a specific threshold, it is called “hot” and translated at runtime to host machine
code. Hence, future executions of that code fragment will not be done interpre-
tively anymore but will use the compiled version instead. This is much faster and
the simulation speed increases. Compiling hot traces at runtime is typically done
by a just-in-time compiler and therefore better known as just-in-time dynamic binary
translation (JIT DBT). The actual translation scheme, however, is mostly one of the
two schemes mentioned above.

JIT DBT does not have a big start-up cost like static compilation, however necessary
compilation work is done at runtime. This additional runtime complexity can be
somewhat balanced, if it appears only for hot traces and not the whole program. If
done properly, this simulation method can also handle dynamic code. Two differ-
ent situations are possible, if dynamic code appears at runtime:
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• The modified code portion has not yet been translated. Nothing happens,
the interpretive mode faithfully reads instruction by instruction and is not
affected by the modifications.

• The code portion without the modifications has already been translated to
host code. If the simulator is able to detect the modified code, the old trans-
lation is discarded. The modified code is now interpreted again until it gets
hot enough for a second translation.

An example technique to detect modified code is using the hardware page
protection mechanism. All memory pages with the program code are set to
read only [47]. If code is being modified, a segmentation fault error would
arise. This exception can be caught and an existing translation for the corre-
sponding page can be discarded directly. Another possibility is using Write
and Execute flags, which can only be set apart from each other. If a page is
being modified, its Write flag is set and the Execute flag erased. Every time
the simulator reaches a new page, the Write flag is checked. If it is set, a cor-
responding translation is discarded and the simulation runs in interpretive
mode for that page.

Apart from ARCSIM (see 3.3) another DBT simulator is EMBRA [48]. EMBRA is part
of the SIMOS simulation environment and simulates MIPS R3000/R40000 binary
code on a Silicon Graphics IRIX machine. Dynamic code is a problem for EMBRA.
Once a code portion is translated, it is not interpreted again, therefore changes
done later in the translated part will not be recognized. As described in Section 2.2
a parallel version of EMBRA was developed, which is capable of simulating multi-
core targets.

FPGA-based Simulation The fastest and most accurate method to test the new
hardware design of a micro-chip is using an actual hardware board. The implemen-
tation of a software simulator takes a long time to become bug free and can still al-
ways be somewhat different from the actual hardware implementation. However,
building a hardware prototype is expensive and can take up to several months.
Hence, this evaluation technique is mainly used if the hardware design is almost
finished, and even then only rarely.

A solution to benefit from fast and accurate hardware execution, yet maintaining an
acceptable amount of development effort, lies in using field-programmable gate ar-
rays (FPGA). FPGAs contain programmable logic components called “logic blocks”
and a hierarchy of reconfigurable interconnects that allow the blocks to be “wired
together”. In most FPGAs, logic blocks also include memory elements, which may
be simple flip-flops or complete blocks of memory. Developers can design hard-
ware using a hardware description language (HDL) like VHDL or VERILOG and
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load the hardware description to an FPGA. Designing hardware is mostly still more
time consuming and complex than software development, but if done properly,
simulation speed-ups and accurate modeling of the target micro-architecture can
be worth the effort.

In general one can distinguish between two approaches to FPGA-based simulation:

• The first approach essentially utilizes FPGA technology for rapid prototyping,
but still relies on a detailed implementation of the target platform [49, 50].
These systems are fast and accurate but still transparent. On the other hand
the development effort is high and a final architecture is difficult to modify
since a complete hardware description is necessary.

• The second approach seeks to speed up performance modeling through a
combined implementation of a functional simulator and a timing model on
the FPGA fabric. This can also mean that some parts of the simulator are built
in software, and some on FPGAs [8,51]. A partitioned simulation approach is
fast, accurate and requires less development effort than designing everything
with an HDL, if some parts are implemented in software. Incorrect partition-
ing, however, could result in lower performance than a pure software sim-
ulator. For example, communication between hard- and software parts can
become a bottleneck.

Timing Model A cycle-accurate ISS operates on the RTL and provides the best ar-
chitectural observability including precise cycle counts for executed instructions.
In order to provide statistical information at that level of detail, a precise model
of the time spent in different micro-architectural stages is necessary. Modeling all
register-to-register transitions in a cycle-by-cycle fashion is very computationally-
intensive since every instruction is moved through every pipeline stage. Therefore,
some simulators drop a precise timing model and use only a fast functional model
instead, which operates on instruction set level and abstracts away all hardware
implementation details. Cycle-accurate simulators typically operate at 20K - 100K
instructions per second, compared with pure functional dynamic compiled simu-
lators, which operate typically at 200 - 400 million instructions per second [38].

Cycle-accurate simulators which partition their hardware implementation into
a timing and a functional model are, for example, the FPGA-based simulator
FAST [51] or the interpretive simulator SIMPLESCALAR [41]. FAST raises simulation
performance by moving the timing model to an FPGA and leaves the functional
model as a software implementation.
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Another possibility to speed up simulation and maintain a sufficient precise view
of the micro-architectural state is statistical cycle-approximate simulation. This tech-
nique is based on the idea of using previously collected cycle-accurate profiling
information to estimate program behavior. This is much faster than running the
whole program in cycle-accurate mode and provides a sufficient approximation.
Examples for cycle-approximate simulations are the following:

SIMPOINT is a set of analytical tools, that uses basic block vectors and clustering
techniques to estimate program behavior [52]. The frequency of basic blocks
being executed is measured and used to build basic block vectors (BBV). BBVs
indicate specific code intervals, which represent program behavior at this
point. Calculating distances between BBVs is then done to find similarities
in program behavior. Now similar BBVs are summarized into clusters and
one BBV of each cluster is chosen as representative. Simulating only the rep-
resentatives (called SIMPOINTS) speeds-up simulation time and provides rep-
resentational statistics for the whole program.

SMARTS stands for Sampling Micro-Architecture Simulation [53]. It is a frame-
work used to build cycle-approximate simulators. An implementation of the
SMARTS framework is the SMARTSIM simulator. In a first step this simulator
systematically selects a subset of instructions from a benchmark’s execution
path. These samples are then simulated in cycle-accurate whereas the rest
of the benchmark is executed in fast functional mode. Collected information
during sample simulation are used to estimate the performance of the whole
program. Each sample has a prior warm-up phase where the simulator al-
ready runs in cycle-accurate mode to build up a proper micro-architectural
state. The length of the warm-up phase depends on the length of the micro-
architecture’s history and must be chosen correctly for proper cycle-accurate
results.

Regression analysis and machine learning is the key strategy for ARCSIM’s cycle-
approximate mode [54, 55]. A set of training data is profiled cycle-accurately
to construct and then update a regression model. This model is used for a
fast functional simulation to predict the performance of previously unseen
code. Training data is either a set of independent training programs or parts
of the actual program being simulated. Detailed information about ARCSIM’s
cycle-approximate mode can be found in Section 3.3.3.
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3.3 ARCSIM Simulator

The next section presents the ARCSIM Instruction Set Simulator [56]. It was devel-
oped at the Institute for Computing Systems Architecture [57], Edinburgh Univer-
sity, by the PASTA research project group. ARCSIM is a target-adaptable instruction
set simulator with extensive support for the ARCOMPACT ISA [6]. It is a full-system
simulator (see 3.2), implementing the processor, its memory sub-system including
MMU, and sufficient interrupt-driven peripherals like a screen or terminal I/O, to
simulate the boot-up and interactive operation of a complete Linux-based system.
Multiple simulation modes are supported, whereas the main focus lies in fast dy-
namic binary translation using a just-in-time compiler and cycle-approximate sim-
ulation, based on machine learning algorithms.

Since ARCSIM is a full-system simulator, it supports simulation of external devices.
They can be accessed using an API for Memory Mapped IO and run in separate
threads from the main simulation thread. Among them is, for example, a screen
for graphical output and a UART for terminal I/O.

3.3.1 PASTA Project

PASTA stands for Processor Automated Synthesis by iTerative Analysis [58]. The
project began in 2006, funded by a research grant from EPSRC1. About 10 re-
searchers are involved and work on different topics in the area of architecture and
compiler synthesis.

The PASTA group’s research focus lies in automated generation of customizable em-
bedded processors. By using different tools supporting design-space exploration,
information about micro-processor characteristics are analyzed and accurately pre-
dicted for different architectural models. Processor characteristics essential for em-
bedded systems are, for example, speed and power consumption. Also of interest
is the effect ISA choice has on execution time, as well as how certain compiler opti-
mizations change the effectiveness of the overall number of instructions executed.
Information about those characteristics enable designers to select the most efficient
processor designs for fabrication.

As shown in Section 3.2.1, ISS strongly support design space exploration. Hence,
ARCSIM is a vital tool in PASTA’s research area.

1EPSRC is the main UK government agency for funding research and training in engineering and
the physical sciences.
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3.3.2 EnCore Micro-Processor Family

As a result of research activities at the Institute for Computing Systems Archi-
tecture, the ENCORE micro-processor family was created [59, 60]. ENCORE is a
configurable and extensible state-of-the-art embedded processor implementing the
ARCOMPACT

TM
ISA [6]. Its micro-architecture is based on a 5-stage interlocked

pipeline with forwarding logic, supporting zero overhead loops (ZOL), freely in-
termixable 16- and 32-bit instruction encodings, static and dynamic branch predic-
tion, branch delay slots, and predicated instructions. In this study the used con-
figuration has 8K 2-way set associative instruction and data caches with a pseudo-
random block replacement policy.

The processor is highly configurable. Pipeline depth, cache sizes, associativity and
block replacement policies, as well as byte order (i.e. big endian, little endian), bus
widths, register file size and instruction set specific options such as instruction set
extensions (ISEs) can be customized. It is also fully synthesisable onto an FPGA and
three fully working application-specific instruction-set processors (ASIP) have been
taped-out recently. Two were made with the code-name CALTON, one fabricated
in a generic 130nm CMOS process and the other one with 90nm. CALTON does not
support instruction set extensions, has a 5-stage-pipeline and 8 K instruction and
data caches. The third chip with the name CASTLE was fabricated in a generic 90nm
CMOS process, supports instruction set extensions for AAC audio decoding, has a
5-stage-pipeline as well and 32 K caches.

ARCSIM models the ENCORE processor and serves as a golden standard model for
further research and development work. Prior to this study a multi-core version
of ENCORE was already designed and able to run within an FPGA platform (see
Section 3.3.5). However, ARCSIM was only capable of simulating the single-core
version.

3.3.3 ARCSIM Simulation Modes

Five different simulation modes are supported by the ARCSIM ISS:

• Cycle-accurate simulation

• Fast cycle-approximate simulation

• High-Speed JIT DBT simulation

• Hardware/Software co-simulation
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• Register tracking simulation

Each mode implements a different simulation strategy (see 3.2.2), which makes
the simulator a useful tool for various tasks. The simulator can be executed cycle-
by-cycle, which is rather slow but very accurate, at high-speed based on a func-
tional instruction-by-instruction mode, or in a lock-step mode with common hard-
ware tools. The following text gives an overview of the single simulation modes,
whereas the High-Speed simulation is described in more detail as this study’s ARC-
SIM multi-core extension is implemented for this mode. Later multi-core extensions
for the remaining modes are possible, but would have exceeded the scope of this
work.

Cycle-Accurate Simulation The target program is executed cycle-by-cycle on the
RTL level with a precise timing model. This enables the simulator to collect de-
tailed micro-architectural statistics like cycles per instruction (CPI) or cache laten-
cies. However, this simulation mode is very slow and therefore not sufficient for
all upcoming software and hardware design tasks.

Fast Cycle-Approximate Simulation Cycle-approximate simulation is based on
cycle-accurate mode but provides a significant speed-up. The key strategy in this
mode is regression analysis. This method tries to find a regression model that
shows the relationship between single values within a set of statistical data. Pro-
vided a sufficient model was found, it can be used to directly calculate specific
data values depending on a set of given input data. The choice of the regression
model’s type (linear, polynomial, etc.) is an essential factor for the quality of esti-
mated statistics and depends on the mechanism that generated the data.

An early version [54] of this strategy was implemented for ARCSIM as follows: In a
first training stage a set of training programs are profiled in both slow cycle-accurate
and fast functional mode. Collected counter statistics like cycle and instruction
count form single data points. They are processed by a regression solver to calcu-
late regression coefficients and build up a corresponding regression model. In a
later deployment stage previously unseen programs are now simulated in fast func-
tional mode. The regression model is used to predict cycle-accurate information for
available functional statistics.

A refined version [55] uses machine learning algorithms to include the training
stage into the actual simulation. During a single simulation run, the simulator is
changing between cycle-accurate and instruction-accurate mode, depending on the
current stage. In the training/learning stage, the target program is simulated cycle-
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accurate and the regression model is updated. As soon as prediction of upcom-
ing values is sufficient enough, the simulator changes into fast instruction-accurate
mode and uses the regression model to estimate low-level statistics. If the quality
of predicted data falls below a customized threshold, simulation switches back to
training stage, possibly repeating the last time slice, and updates the model again.
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Figure 3.5: JIT dynmaic binary translation flow. [61]

High-Speed Simulation The High-Speed mode is based on DBT using a Just-
In-Time compiler to gain significant speed-ups. In fact speed-ups were possible
which even exceed the native execution performance of speed-optimized silicon
implementations of the ENCORE processor [7]. As the evaluation chapter will show
later, the same has been achieved again for ARCSIM’s multi-core extension done in
this study.
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As mentioned in Section 3.2.2 most DBT simulators use a hybrid simulation ap-
proach to balance out additional translation complexity at runtime. ARCSIM trans-
lates only frequently used code portions to native code, while the rest is still inter-
preted. Obviously the more code that is executed natively, the faster the simulation
becomes. At the same time the simulator is flexible enough to support dynamic
code changes like self-modifying code and precise enough to maintain detailed
micro-architectural observability [7].

Figure 3.5 gives an overview of ARCSIM’s JIT DBT algorithm for a single-core sys-
tem. Simulation time is partitioned into trace-intervals. During a trace interval
instructions are either interpreted or, if a translation is present, executed natively.
After each interval, statistics recorded for executed traces are analyzed. If a trace
is considered hot, it is dispatched to a concurrent trace translation priority queue
(see 3© in Figure 3.5).

A trace-interval starts with fetching the next PC address from memory. Depending
on which block entry the address points to, the following events are possible (see
flow-chart in Figure 3.5):

• The address hits an entry in the Translation Cache (TC), which means the
following block has been translated recently and a pointer to a corresponding
Translated Function (TF) in native code is present. In that case, the TF is
executed.

• The address is not registered in the TC but can be found in the Translation
Map (TM), which contains an entry for every translated trace. In that case,
the TC is updated with the entry found in the TM and the corresponding
function is executed.

• A block is discovered that has not yet been translated and is therefore nei-
ther found in the TC nor in the TM. In that case the block is interpreted and
corresponding execution statistics are updated.

• The block belongs to an already translated trace but has been changed by self-
modifying code for example. In that case, the translation is discarded and the
block is interpreted.

If the end of a trace-interval is reached, collected profiling information about inter-
preted basic blocks is analyzed. With a simple heuristic depending on recency and
frequency of interpretation, the simulator decides if a trace is hot. If so, the trace is
enqueued in a shared priority queue (see 3©, 4© in Figure 3.5), where a Jit trans-
lation worker can access it. In a single-threaded execution model, the interpreter
would pause until translation is done. ARCSIM’s simulation loop can continue di-
rectly after dispatching translation items (see 2© in Figure 3.5), while the decoupled
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JIT DBT task farm translates hot traces concurrently. Running several JIT transla-
tion workers asynchronously to the simulation loop in separate threads helps to
hide the compilation latency - especially if the JIT compiler can run on a separate
core. In addition, translations for newly discovered hot traces are available earlier
because multiple hot traces can be translated at the same time. The lower part of
Figure 3.5 shows the decoupled and parallel JIT DBT task farm and the compilation
process.

Translation to native code is based on the LLVM [62] compiler infrastructure and
partitioned into multiple steps. At first, target instructions are mapped onto cor-
responding C-code statements. Intermediate C-code is actually not necessary but
provides better debuggability. These functions are then processed by the LLVM

compiler, which translates them into an Intermediate Representation (IR) and ap-
plies standard LLVM optimization passes. In the last step shared libraries in x86
host-code are created and loaded by a dynamic linker. To get the most out of LLVM

optimizations, the granularity of translation units can be adjusted to very large
ones, which comprise complete CFGs or memory pages instead of a single basic
block [63]. Hence, more space for code optimizations is provided.

At any time during JIT DBT simulation, a detailed view of the ENCORE micro-
architecture is maintained. This is possible by partitioning the simulation into a
functional and a simple, yet powerful, software timing model. Typically cycle-
accurate ISS simulate every single step of the hardware pipeline cycle-by-cycle and
simply count executed cycles to get corresponding statistics. The essential idea
of ARCSIM’s simulation mode is simulating instruction-by-instruction and updat-
ing the micro-architectural state afterwards. Instead of modeling every detail, the
timing model adds up array entries with corresponding latency values for each
pipeline stage, operand availabilities and so forth. Using this timing model, the
High-Speed mode provides precise micro-architectural information and is on aver-
age still faster than a speed-optimized FPGA implementation of the ENCORE pro-
cessor [7]. If precise information is not required, the timing model can be deacti-
vated. A pure functional JIT DBT simulation is on average 15 times faster than a
simulation using the cycle-accurate model.

Hardware/Software Co-Simulation The cooperative simulation runs the simu-
lator in lock-step with a hardware simulation environment (i.e. MODELSIM). An
extra tool called COSIM is used to control the hardware-software co-design process.
It uses the Verilog Programming Language Interface (VERILOG PLI) to interact with
the internal representation of the design and simulation environment. After each
executed instruction the results of both simulators are checked against each other.
With ARCSIM as a golden master reference model the ENCORE VERILOG chip de-
sign can be verified.
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Register Tracking Simulation This profiling simulation mode works like the
modes mentioned above and adds additional statistics about the simulation run.
Register accesses like reads and writes are tracked and enable the collection of
statistics like dynamic instruction frequencies, detailed per-register access statis-
tics, per-instruction latency distributions, detailed cache statistics, executed delay
slot instructions, as well as various branch prediction statistics.

3.3.4 ARCSIM’s Processor Model Caches
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Figure 3.6: ARCSIM’s different Processor model caches.

The Processor model used by the ARCSIM simulator has multiple different caches.
This section gives a quick overview of the different types and their purpose. As
you can see in Figure 3.6, the caches can be separated in two different groups. One
group is part of the timing model to correctly simulate target architecture timings.
The other group is used to speed up simulation performance.

Data Cache This cache is used to speed up access to frequently needed data ad-
dresses in the main memory.

Instruction Cache This cache stores a couple of instructions up front to speed up
the fetch-stage during program execution.

Translation Cache This cache holds references to frequently used translations of
target to native code which are needed for High-Speed simulation.
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Page Cache Recently used memory pages are stored here for fast access. The page
cache is also helpful in avoiding repeated translations of target memory ad-
dresses to host memory addresses, which is quite costly.

Decode Cache Since the decoding of instructions is expensive, this cache is used
to provide access to already decoded instructions, if they are needed again
later on.

In addition to the private processor caches comes a second level translation cache,
which is accessed by the JIT DBT translation workers. It also speeds up simulation
performance for ARCSIM’s High-Speed mode (see Section 4.2 for details).

3.3.5 Target System Architecture
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Figure 3.7: Multi-core hardware architecture of the target system.

As a physical reference system this study uses a 12-core implementation of the
multi-core system, synthesised for a Xilinx X6VLX240T FPGA. The system ar-
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chitecture is shown in Figure 3.7. The twelve processor cores ( 1© in Figure 3.7)
are connected through a 32-bit hierarchical, switched, non-buffered AXI intercon-
nect fabric ( 2© in Figure 3.7) to RAM and I/O devices ( 3© in Figure 3.7). An ASIP

implementation of the same ENCORE processor, implemented in a generic 90 nm
technology node, is currently running in the PASTA research group’s laboratory at
frequencies up to 600 MHz. The processor cores can attain a 50 MHz core clock us-
ing this FPGA fabric, while the interconnect is clocked asynchronously to the cores
at 75 MHz.

I/O devices connected to the system are a display driver with a 40 Kbytes mem-
ory mapped character buffer, and a UART. Memory in the system is limited to
512 Kbyte RAM plus a 16 Kbyte bootup PRAM. JTAG accessible utility functions
and event counters were inserted to be able to record data from the cores. Recorded
data for each core includes total clock cycles when not halted, total committed in-
structions, total I/O operations, and total clock cycles spent on I/O operations.
From these counters the MIPS of each core are calculated at 50 MHz (FPGA) and
600 MHz (ASIP), respectively.

3.3.6 libmetal: A Bare-Metal Library

Typically binaries being executed on a computer system use the underlying oper-
ating system’s functionality like file or device access instead of implementing it by
themselves. Even though ARCSIM is able to boot up and run a complete Linux OS
for a single-core simulation, it is sometimes necessary to execute binaries bare-metal.
Bare-metal means no underlying OS is present at runtime. In order to avoid imple-
menting basic functionality for each binary, a bare-metal library called libmetal
has been created.

Since libmetal is only a library, it does not fulfill all operating system tasks. But
it provides enough functionality to run target applications without extensive mod-
ifications to their program code. Key components are among others a keyboard
interrupt handler, a keyboard API, a screen output API and an implementation of
the printf family.

Section 4.3 describes how this library has been further extended for multi-core tar-
get binaries running on multi-core ARCSIM.
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3.4 POSIX Threads

As this study is about extending an application for single-core programs to an ap-
plication supporting multi-core ones, this section will give an overview of multi-
threaded programming techniques using pthreads. This standard programming
interface for multi-threaded applications has been implemented for the libmetal
library mentioned in Section 3.3.6 and allows multi-core ARCSIM to run multi-
threaded target binaries using the pthread interface without any modification of
the source code.

Pthread stands for POSIX threads, where POSIX (Portable Operating System In-
terface) indicates the family of IEEE operating system interface standards in which
pthread is defined. This standardized C language threads programming interface
provides the functionality to create independent streams of instructions, which can
be scheduled by the operating system to run in parallel or interleaved. Pthreads
were originally created for UNIX based systems and are now a popular tool for
writing multi-threaded programs [64, 65].

This section will describe three major classes of routines in the pthreadAPI, which
are thread management, mutex variables and condition variables.

3.4.1 Thread Management

The pthread interface is not necessary to create parallel applications on a UNIX

system. You could also use the fork command which copies the currently running
process and creates a child process that is almost identical to its parent. The new
process gets a different Process Identification (PID) and the fork call returns differ-
ent values to the parent and the child. Using this information a programmer can
create different execution paths through the application for both processes and the
operating system can interleave or even parallelize them for multiple cores.

However, creating and managing a process comes with a lot of runtime overhead
for the operating system. Calling a light-weight pthread create needs much less
work, since no new process needs to be created. Threads exist within their par-
ent process and can therefore use corresponding resources. Only bare essential
resources are duplicated such as the stack pointer, registers, scheduling properties,
a set of pending and blocked signals and thread specific data. This enables a thread,
even if it is running inside a parent process, to be scheduled individually. In addi-
tion, inter-thread communication is more efficient and in many cases easier to use
than inter-process communication.
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Figure 3.8 shows an example of creating and terminating threads using the
pthread interface which can be accessed by the header included in line 1. Ev-
ery thread apart from the main thread prints a string with its thread id. The main
tread uses a pthread create call in line 19 to create five new threads. This call expects
a unique identifier for the new thread, an object to set thread attributes, the C rou-
tine that the thread will execute once it is created and a single argument that may
be passed to the start routine. The routine used here is PrintHello which is defined
in line 6. Upon exiting the routine pthread exit is called to shut down the thread and
free corresponding resources. It is also possible to exit a thread from a different
thread by calling pthread cancel or shut it down by terminating the parent process.

1 # include <pthread . h>
2 # include <s t d i o . h>
3 # include <s t d l i b . h>
4 # define NUM THREADS 5
5
6 void ∗Pr in tHel lo ( void ∗ threadid ) {
7 long t i d ;
8 t i d = ( long ) threadid ;
9 p r i n t f ( ” Hello World ! I t ’ s me, thread #%ld !\n” , t i d ) ;

10 p t h r e a d e x i t (NULL) ;
11 }
12
13 i n t main ( i n t argc , char ∗argv [ ] ) {
14 pthread t threads [NUM THREADS] ;
15 i n t rc ;
16 long t ;
17 for ( t =0 ; t<NUM THREADS; t ++) {
18 p r i n t f ( ” In main : c r e a t i n g thread %ld\n” , t ) ;
19 rc = p t h r e a d c r e a t e (& threads [ t ] , NULL,
20 PrintHel lo , ( void ∗ ) t ) ;
21 i f ( rc ) {
22 p r i n t f ( ”ERROR c r e a t i n g thread : %d\n” , rc ) ;
23 e x i t (−1) ;
24 }
25 }
26 p t h r e a d e x i t (NULL) ;
27 }

Figure 3.8: Pthread creation and termination

Of course, many more functions are provided to manage threads with the pthread
interface, like joining threads or modifying the thread environment or runtime.



38 3 Background

3.4.2 Mutex Variables

An important task which goes hand in hand with using multiple threads is provid-
ing thread safeness. That means, if more than one thread accesses a shared resource
such as a global object or global memory, then access to this resource needs to be
synchronized. If not, race conditions or synchronization errors can occur. A race
condition appears as a result of unpredictable program behavior in parallel appli-
cations. Since thread scheduling is not deterministic, a programmer can not rely
on specific timings in a parallel program execution if it is not synchronized explic-
itly. If synchronization is missing, one thread could always execute a specific code
portion before the other ones, until it arbitrarily happens the other way around
and execution results change or even an error occurs. An error could, for example,
arise, if one thread deletes an object from a list, while a different thread is already
modifying it.

1 # include <pthread . h>
2 pthread mutex t count mutex ;
3 long count ;
4
5 void increment count ( ) {
6 pthread mutex lock (&count mutex ) ;
7 count = count + 1 ;
8 pthread mutex unlock(&count mutex ) ;
9 }

10
11 long get count ( ) {
12 long c ;
13 pthread mutex lock (&count mutex ) ;
14 c = count ;
15 pthread mutex unlock(&count mutex ) ;
16 return ( c ) ;
17 }

Figure 3.9: Synchronizing threads with mutex varibales

A very basic synchronization mechanism provided by the pthread interface is
the use of mutex varibales. Mutex is an abbreviation for mutual exclusion. It is an
object that protects shared resources or critical program parts. Figure 3.9 shows
how a mutex varibale is used in order to synchronize threads. The count variable
is being protected by a mutex. A thread can increment the count variable by using
the increment count method or read it with a get count call. Every direct access to
count has a prior call of pthread mutex lock with the corresponding mutex object
count mutex. This call will reserve the mutex for the calling thread and block every
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other thread until the mutex is freed again by a pthread mutex unlock call. A possible
implementation for a mutex could, for example, use a list to gather blocked threads,
send them to sleep as long as they are blocked and wake them up again when the
mutex is free. Of course, if multiple threads are waiting for a mutex to be released,
only one is allowed to go on. The others are sent to sleep again until it is their turn
to access the protected section.

3.4.3 Condition Variables

Consider a Producer and Consumer application, where a thread takes calculation
results from a different thread and processes them, if they are available. A possible
implementation could be a Boolean variable that is set by the producing thread, if
data is available. The Consumer runs in a while-loop constantly monitoring the
variable and bails out as soon as it turns true. This implementation is called the
busy-loop concept. It works but is not very efficient, since the waiting thread uses a
lot of CPU resources polling for the Producer’s notification.

A much more efficient technique is the use of condition variables. They are used to
communicate between threads sharing a single mutex and based upon program-
mer specific conditions. If a thread waits on a condition variable, it goes to sleep
and therefore does not need any resources. If the Producer finishes a data package,
it wakes up the waiting Consumer thread and continues with its work.

Figure 3.10 shows example code implementing this scenario. The routines Pro-
ducer and Consumer in line 6 and 17 are entry points for corresponding threads.
The Producer thread is constantly producing work items as indicated in line 8. As
soon as an item is ready, it locks the access to a global work queue, inserts the
item and signals a possibly waiting Consumer thread that new items are available.
Afterwards, it releases the queue again and processes the next work item. The
Consumer on the other side waits at the condition variable in line 21 after locking
the work queue access. As soon as it goes to sleep at the condition variable, the
work mutex gets released again. If a signal arrives, the Consumer wakes up, im-
mediately blocks the mutex and leaves the if-clause to consume the available item
in line 23 and 24. As soon as consumption is finished, it continues with the main
loop and goes to sleep again. In case of multiple Consumers, the Producer would
use a broadcast call instead of a signal in line 11, since a broadcast wakes up all
waiting threads instead of only one. This, however, would need a second mod-
ification in line 20 where the if needs to be replaced by a while. Assume several
Consumers are waiting at the condition variable. As soon as the broadcast arrives,
all of them are woken up in a random order and get the mutex one after the other.
The first one consumes the work item whereas the other ones stay in the while-loop
and go to sleep again.
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1 # include <pthread . h>
2 pthread mutex t work mutex ;
3 pthread cond t work queue cv ;
4 queue<WorkItem> work queue ;
5
6 void∗ Producer ( void∗ arg ) {
7 for ( ; /∗ e v e r ∗ / ; ) {
8 WorkItem item = produce ( ) ;
9 pthread mutex lock (&work mutex ) ;

10 queue . push ( item ) ;
11 pthread cond signal (&work queue cv ) ;
12 pthread mutex unlock(&work mutex ) ;
13 }
14 p t h r e a d e x i t (NULL) ;
15 }
16
17 void∗ Consumer ( void∗ arg ) {
18 for ( ; /∗ e v e r ∗ / ; ) {
19 pthread mutex lock (&work mutex ) ;
20 i f ( work queue . empty ( ) ) {
21 pthread cond wait (&work queue cv , &work mutex ) ;
22 }
23 consume ( work queue . f r o n t ( ) ) ;
24 work queue . pop ( ) ;
25 pthread mutex unlock(&work mutex ) ;
26 }
27 p t h r e a d e x i t (NULL) ;
28 }

Figure 3.10: Thread communication with condition variables

3.4.4 Pthreads in ARCSIM

Pthreads are used for the ARCSIM simulator in two different ways. One way is
directly for the simulator implementation, where multiple JIT translation threads
are created (see 3.3.3), external devices are running in parallel and every proces-
sor gets its own simulation thread apart from the main thread (see 4.1). Since the
pthread interface was originally designed for the C language, multiple wrapper
classes have been implemented for ARCSIM to support object orientation and sim-
plify development. A new class can now inherit from a Thread structure, which
provides a run function to start the thread. Synchronization is done by special
Mutex and ConditionVariable classes, which hide instantiation complexity and can
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easily be used by calling, for example, mutex.acquire() or mutex.release().

As a second way, the pthread interface is used in the libmetal library (see 3.3.6).
Here a customized pthread interface implementation is provided for target pro-
grams. Hence, they can benefit from the pthread interface to run multi-threaded
programs on a simulated multi-core target system. Section 4.3 explains the imple-
mentation in detail.

3.5 Benchmarks

The multi-core extensions of the ARCSIM simulator implemented in this study
were tested against two official benchmark suites: EEMBC’s MULTIBENCH 1.0 and
SPLASH-2, as well as other applications. The following section provides a brief
overview of the design and functionality of the benchmarks.

3.5.1 MULTIBENCH 1.0

The Embedded Microprocessor Benchmark Consortium (EEMBC) has produced
benchmarks for embedded processors since 1997. In 2008 a new benchmark suite
called MULTIBENCH 1.0 was released [66, 67]. This suite consists of compute-
intensive tasks commonly performed by networking equipment, office equipment
(especially printers) and consumer-electronics products.

A MULTIBENCH task, also called workload, can include one or more kernels, also
called work items. MULTIBENCH 1.0 comes with 36 predefined workloads, which
are combinations of different work items. A work item is simply an algorithm or
routine that performs a common process found in real-world embedded software.
Besides using predefined workloads it is also possible to create customized ones
from a total of 14 work items. Work items can be combined in various ways as
mentioned above to reflect typical application workloads of embedded systems.
Table 3.2 lists all work items and gives a short functional summary for each of
them.

A single MULTIBENCH workload can be designed to focus on a specific level of
thread parallelism depending on the combination of work items. It can focus on
thread-level parallelism among disparate work items, among two instances of the
same work item, operating on different data, or on data-level parallelism within
a single work item. Threading is implemented with an API that closely resem-
bles the pthread API. In order to run the benchmark suite on a system support-
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Name Description
md5 networking routine that calculates the Message Digest 5

checksums for a given data set
ippktcheck networking routine that checks the header of an IP packet
rgbcmyk color-conversion routine that transforms an image from

RGB color space to the CMYK color space
rotate image-rotation routine that rotates an image 90◦ clockwise
ipres networking routine that reassembles a given data set of IP

packets
mpeg2 imaging routine that runs an MPEG-2 decoder application

rgbyiq03 color-conversion routine that transforms an image from
RGB color space to the YIQ color space

rgbhpg03 imaging routine that receives a dark or blurry gray-scale
image and sharpens it with a high-pass filter or smoothens
it with a low pass filter

cjpeg imaging routine that compresses an image to the JPEG for-
mat

djpeg imaging routine that decompresses a JPEG image to the
original RGB format

tcp networking routine that processes data for TCP transfers
mp3player audio processing benchmark that decodes an MP3 audio

file
huffde algorithmic benchmark kernel executes Huffman decoding

on a variety of data sets
x264 video processing routine that encodes a video stream in

H.264 format

Table 3.2: Work items provided by EEMBC’s MULTIBENCH 1.0 benchmark suite.

ing pthreads, EEMBC’s API calls can be mapped on the corresponding pthread
functions.

3.5.2 SPLASH-2

The SPLASH-2 benchmark suite [68] is an extension of the original Standford
ParalleL Applications for SHared memory suite (SPLASH), a suite of parallel pro-
grams written for cache-coherent shared address space machines. Since the original
version was not designed to work with modern memory system characteristics or
a large number of cores, it has been extended and improved to a second version.
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The SPLASH-2 suite is a collection of parallel programs providing a workload for
the quantitative evaluation of multi-core systems. Each program is designed to
partition its work using threads. In contrast to MULTIBENCH, SPLASH-2 sets the
focus on scientific workloads. All together SPLASH-2 consists of twelve applica-
tions where eight of them are complete ones and the remaining four are application
kernels. These programs cover a number of common complex calculations in areas
such as linear algebra, complex fluid dynamics and graphics rendering. Table 3.3
lists all applications and gives a short functional summary for each of them.

Name Description
Barnes simulates the interaction of a system of bodies in three di-

mensions over a number of time-steps, using the Barnes-
Hut hierarchical N-body method

Cholesky factors a sparse matrix into the product of a lower triangu-
lar matrix and its transpose

FFT is a complex one-dimensional version of the “Six-Step” Fast
Fourier Transformation algorithm described in [69]

FMM works like Barnes but simulates interactions in two di-
mensions using a different hierarchical N-body method
called the adaptive Fast Multipole Method

LU factors a dense matrix into the product of a lower triangular
and an upper triangular matrix

Ocean simulates large-scale ocean movements based on eddy and
boundary currents

Radiosity computes the equilibrium distribution of light in a scene
using the iterative hierarchical diffuse radiosity method

Radix implements an integer radix sort algorithm based on the
method described in [70]

Raytrace renders a three-dimensional scene using raytracing
Volrend renders a three-dimensional volume using a ray casting

technique
Water-Nsq evaluates forces and potentials that occur over time in a sys-

tem of water molecules using a O(n2) algorithm
Water-Sp works as Water-Nsq but uses an O(n) algorithm instead

Table 3.3: SPLASH-2 application overview.

The benchmarks Ocean and LU come in two different versions. One version uses
data structures that simplify the program implementation but prevent blocks of
data from being allocated contiguously. The second version in contrast allows
blocks of data to be allocated contiguously and entirely in the local memory of
the corresponding processor by using a more complex implementation concept for
the corresponding data structures.



44 3 Background

Like EEMBC’s MULTIBENCH suite, SPLASH-2 can be built for a system supporting
pthreads. A predefined set of macros can be modified to map onto corresponding
pthread library calls.

3.5.3 Other Benchmarks

Besides official benchmark suites, ARCSIM was tested against a couple of other
benchmark programs. These include simple applications to debug multi-core func-
tionalities, as well as bigger and more sophisticated ones to get simulations results
for more realistic workloads.

A simple test application to verify if all cores are running properly, uses a floating
picture and ARCSIM’s screen device. The screen is partitioned among the simulated
cores, each of which draw some section of the image. Each core then pans around
the image, bouncing off the border should they come to it. It can now easily be
observed if all cores are running properly. If the screen partition assigned to a
specific core stays black or the picture stops moving, something must be wrong
in the core’s update cycle. As JIT workers translate more and more target traces
to native code, one can see how the movement speed of the pictures increases the
longer the program runs.

A more sophisticated application, which fully utilizes a target multi-core architec-
ture, is a parallelized fractal drawing algorithm executed across twelve cores. The
fractal drawing algorithm partitions its workload into multiple parts, which are
each processed by different threads. It is perfectly qualified to test multi-core archi-
tecture because of its embarrassingly parallel nature. An embarrassingly parallel
workload is one for which little or no effort is required to separate the algorithmic
problem into a number of parallel tasks. Hence, it is possible to assign a row of the
screen to each simulated core, or even a single pixel. This easy parallelization and a
low memory footprint help to avoid scalability issues, when the fractal application
is used for larger core combinations.
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Chapter 4

Methodology

The following chapter describes how the single-core ARCSIM simulator, introduced
in Section 3.3, has been extended to a multi-core simulation environment. This
work splits up into two different main tasks. It is not only necessary to imple-
ment new system functionalities for running multi-core simulations. The extended
simulator also needs to maintain high simulation performance even for several, si-
multaneously running cores. Therefore, various optimizations have been applied
in this study to create a fast and scalable multi-core ISS. These include a carefully
designed software architecture, which can handle complex synchronization tasks
of parallel applications. A mechanism has been implemented to share translations
between cores to benefit data-parallel target applications, where different cores ex-
ecute the same code on different data. For a direct support of multi-threaded tar-
get programs a light-weight multi-threading library compatible to POSIX threads is
provided, including an efficient mapping of atomic exchange operations to benefit
synchronization. With this library multi-threaded target programs can be executed
directly by the simulator without the need to run an OS or apply any changes to
their program code.

4.1 Replicating the Single-Core Simulator

The main goal of this study is to extend single-core ARCSIM to a multi-core simula-
tor. On a software architecture level this implies replicating the processor structure,
which is responsible for modeling the target system by executing target applica-
tions. In ARCSIM this structure is called the Processor class. It is designed as a
worker controlled by a supervising structure called the System class. The System is
the first object created on program start-up and the last one active on shut-down.
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Figure 4.1: Tasks being performed to replicate the CPU. The main loop has been separated
into different threads, a communication system has been established and access to shared
resources has been synchronized.

The System class is responsible for reading the target hardware configuration and
simulation parameters to build up a corresponding simulation environment. This
includes instantiating objects for a global memory model, IO-devices, the Processor,
etc. After a simulation model has been fully initialized, the simulator’s main loop
is started. It runs sequentially in a single thread, where the control flow changes
repeatedly between controlling System and working Processor (see 4.1a).

To begin using multiple Processors it is necessary to identify System and Proces-
sor specific tasks, separate them and split up the main loop. This allows us to
create two independent main loops for System and Processor and run them in dif-
ferent threads. Once the main loop is separated and the two components are run-
ning alongside each other, a communication mechanism needs to be implemented
and access to shared resources must be synchronized. Now multiple Processor
instances can be spawned and executed concurrently (see Figure 4.1b). In the fol-
lowing paragraphs this process will be described in detail.
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4.1.1 Sequential Main Loop
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Figure 4.2: Sequential System-Processor main loop.

Figure 4.2 shows a simplified flow chart of the sequential main simulation loop.
While simulation is active, the Processor (or CPU) is updated. A simulation halt
can be triggered for two reasons. The first one is caused during Processor update,
where an execution step encountered an exception or the end of a target program
is reached. In that case the CPU’s halt flag (state.H) is set, which is part of the
target’s architectural model. The second reason has an external source, where the
user can interrupt the simulation, or another program calls an API function which
terminates the program. The latter could happen during hardware-software co-
simulation, for example, as described in Section 3.3.3.

The System controls the Processor’s simulation tasks through specific function
calls, which stop, start, continue or pause the CPU (see 1© in Figure 4.2). Depend-
ing on their intended functionality, these functions reset or initialize state variables,
log current statistics or control the Processors timing model by starting or stopping
internal timers.
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The lower part in Figure 4.2 marked by a 2© shows which tasks are actually re-
lated to the CPU and could be extracted into a Processor loop. Here, depending on
the currently active simulation mode a corresponding Processor update function
is called. Number 3© marks those function calls, which execute different modes of
operation of the ARCSIM simulator as described in Section 3.3.3. Since this flow-
chart is somewhat simplified, not all modes are displayed here. The three modes
shown in the diagram are the ones that have been extended in this study. JIT DBT

stands for the High-Speed mode, Tracing emits additional execution statistics and
debug information and Normal is a basic interpretive simulation. After executing
the update function, the halt flag is checked for errors or the end of an application.
If the flag is set, the simulation terminates. However, the decision, if a simulation
halt was triggered, needs to take care of external and Processor internal sources.

Spawning and starting CPU objects and handling upcoming Processor requests and
external events are administrative tasks related to the System. In contrast to the
Processor, it is not active all the time. It spends most of its time waiting, to be ready
when it is needed. The next section will introduce the separated main loops in
detail.

4.1.2 Decoupled Simulation Loops

System Simulation States Processor Simulation States

IDLE

WAIT

1 2

RUNNING

PAUSED STOPPED

HANDLE 

EVENTS

Figure 4.3: Simulation states for System 1© and Processor 2©.

Since the regions for System and Processor in the sequential main loop have been
identified, it is now possible to create separate loops. A mechanic needs to be pro-
vided to maintain the original architecture pattern where the System is the con-
troller and the Processors are the workers. For two separate loops working in par-
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allel, this problem was solved by using state machines defining specific simulation
states. That way the System can check what is currently happening in the Processor
and direct the CPU’s program flow by changing its simulation states.

The Processor’s state machine consists of four different states (see 2© in Figure 4.3):

Idle This state is the Processor’s initialization state. It is set only when the object is
being instantiated.

Running In this state, the Processor runs through its main loop and executes the
target program.

Paused The Processor sleeps and does nothing. If it gets woken up again, it re-
sumes operation.

Stopped Simulation has been completed and the Processor leaves its main loop.

These states enable the System component to control all running CPUs by chang-
ing their states and therefore directing them to act according to the System’s com-
mands. It also helps to avoid errors when the System wants to interfere with the
Processor’s update loop, for example, to shut it down or pause it.

Debug information useful to the programmer is provided. For example, to test the
simulator’s functionality, a programmer could use a self-made target application.
This application switches between assigning calculation work, pausing, resuming
or stopping available processors. By logging the current processor state and state
changes in addition to executed instructions, it is possible to observe exactly how
the simulated processors behave. Odd behavior like processors never reaching the
STOPPED state or never going to sleep even if a sleep-instruction was processed,
can be found more easily this way.

The System does not have an actual implemented state machine for its main loop,
since it only needs two different states (see 2© in Figure 4.3). One is handling up-
coming events and the other is waiting for them. Section 4.1.3 lists possible simu-
lation events and explains how to handle them in detail. It also shows how System
and Processor interact with each other, since changing variables directly in a paral-
lel environment can result in race conditions or deadlocks.

Parallel Simulation Loops If no problems like exceptions or external distur-
bances occur during the simulation of an application, the System has almost noth-
ing to do. After creating the simulation environment and spawning and starting the
Processors, it goes to sleep. As long as it is sleeping, it does not use any host CPU
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Figure 4.4: Parallel main loops for System 1© and Processor 2©.

resources which benefits simulation performance. As soon as simulation events
arise, it wakes up, handles all pending events and goes to sleep again. If the end
of a simulation is reached, it shuts down all CPUs, cleans up the memory and exits
the application (see 1© in Figure 4.4). The blue box labeled “handle event” is the
equivalent of the blue boxes in the sequential main loop from Figure 4.2. Here the
System changes Processor states indirectly by telling the CPU, which state to enter
next.

The Processor’s main task during its simulation loop is executing the target ap-
plication, which is indicated by the green box labeled “update simulation” in Fig-
ure 4.4 2©. This box is equivalent to the green boxes in Figure 4.2. In each cycle it
also checks for new state change notifications from the System and handles them,
if necessary. It can break out of the loop and sleep, if it gets PAUSED, or leave the
main loop by exiting the simulation.

To efficiently utilize multi-core host hardware, ARCSIM runs System and Proces-
sors in separate threads. The System runs in the application’s main thread whereas
the Processor classes are derived from the pthread wrapper class. A class deriv-
ing from the pthread wrapper needs to implement a run method. This method
can then be called by the System in order to start the thread and therefore the Pro-
cessor’s main loop. Upon leaving the main loop, the CPU thread joins the main
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thread and all resources are released (see Section 3.4 for details about pthreads
and the implemented wrapper).

4.1.3 System-Processor-Communication
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Figure 4.5: Sequence diagram showing how Processor events are handled by the System
using the Event Manager.

System and Processor communicate with each other by using a structure called the
Event Manager. This interface structure provides a synchronized method to send,
handle and notify requests. Figure 4.5 shows an example sequence for communi-
cation between the Processor and the System.

Initially the System sleeps and the Processor executes a target application. At 1©
an event arises during the Processor’s update cycle. For example, this could be
a sudden exception in the target program flow. As the Processor recognizes the
exception, it stops working and sends a request using the Event Manager. This
intermediate structure creates a simulation event item for the request, puts it into an
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internal event queue and wakes up the System. The System gets the wake-up call
at 2©, retrieves the pending event from the Manager and handles it as necessary. In
our case it creates a state change action item, which tells the Processor to stop. This
item is then placed in another queue inside the Processor’s state machine structure
(explained later) and the event is marked as handled. Now the System’s work is
done and it goes back to sleep. It is possible that multiple events are pending in
the event queue. In that case, the System stays awake and processes all events.
In our example the handled event is removed from the Manager’s queue and the
Processor, waiting for its request to be handled, gets unblocked. At 3© the Processor
continues with its main loop. As it recognizes the action item in its state machine
queue, it sets its own simulation state from RUNNING to STOPPED.

Using this intermediate structure for communication has several advantages in
comparison to multiple communicating components accessing each other directly:

• Communication is done asynchronously. The component with the upcoming
request does not need to wait until a receiver is ready to listen. However,
in ARCSIM’s case communication is blocking and the Processor waits for the
request to be handled. This behavior is necessary since the System is the
controlling component and decides what to do next for upcoming requests,
before the CPU continues.

• Senders do not need to know the receiver of a message, as long as it is han-
dled properly. It is also possible to register multiple receivers of which one is
handling the events and the other one is monitoring them, for example.

• It is easy to add, remove or exchange participants at runtime without interfer-
ing with other components. The Processor class in our example could easily
be exchanged for a user interrupt handler. The user closes the application
window, which invokes an interrupt handler. This handler creates an event
to stop all Processors and the System, and hands it over to the Event Manager.
This is actually done when shutting down ARCSIM at runtime by closing the
Screen device window.

• Creation of new simulation events is done easily by adding a new type and
implementing corresponding handlers in all participating structures.

• Communication between multiple partners can easily be synchronized,
where synchronization complexity is hidden from the calling components.
The Event Manger provides methods to send or receive requests and syn-
chronizes the methods responsible for event queue access internally.

The following sections give a detailed overview on Simulation Events and State
Change Action types and how they are used by the Event Manager for communi-
cation matters.
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Simulation Events Two different types of simulation events are supported. One
is a Processor Event, which is caused by a Processor. The other is an External or
System Event caused by the user or an external application. Table 4.1 shows all
possible event reasons:

Event type Reason Description

SIM EVENT CPU
EVENT CPU STOP If an issue arises during the

Processor’s update cycle, this
event reason is used.

EVENT CPU PAUSE If the Processor encounters a
sleep instruction, this event
reason is used.

SIM EVENT SYSTEM EVENT SYS STOP ALL If the user interrupts simula-
tion and the whole applica-
tion needs to shut-down, this
event reason is used.

Table 4.1: System and Processor simulation event reasons.

State Change Action Parallelism and high simulation speed can cause multiple
state changes for a single CPU to quickly follow each other. Because of external Sys-
tem Events, a state change can arise asynchronously anywhere in the Processor’s
update cycle. In order to still guarantee proper handling of upcoming changes, the
CPU’s state is only changed directly by the CPU itself. However, this is done only
on behalf of the supervising System structure. The System uses state change actions
as commands in order to tell a CPU which state to use next. This ensures proper
handling of the problems mentioned above. Multiple commands are processed at
a safe spot in the Processor’s main loop, in the right order and without losing one.

Incoming state change actions are stored in the Processor’s state machine structure
by using a synchronized queue for concurrent access. At the beginning of each loop
cycle, the Processor scans this queue for new state changes. If an action is present,
the corresponding state is set and the main loop starts again. Possible state change
actions are listed in Table 4.2.

Action Description
CPU STATE CHANGE RUN Switch the Processor state to RUNNING mode.

CPU STATE CHANGE PAUSE Switch the Processor state to PAUSED mode.
CPU STATE CHANGE STOP Switch the Processor state to STOPPED mode.

Table 4.2: Processor state change actions.
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Of course, a lot more events and actions are possible. For example, single-core
ARCSIM has an interactive mode, where target program execution can be inter-
rupted at any time to monitor the current state or change simulation modes. Pos-
sible actions for the interactive mode could be “change to fast mode”, “execute the
next N instructions” or “print architecture state”. This work, however, exceeds the
scope of this study.
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Figure 4.6: Interaction between Processor, Event Manager and System to handle state
changes.

Figure 4.6 shows how Processors, Event Manager and System interact by using
event- and action-items to control CPU states. In contrast to Figure 4.5 it does not
focus on the the exact control flow sequence, but the underlying data structures.
Initially all Processors are updating a target application, when CPU 0 encounters
the end of the application at 1©. Immediately the CPU sends a STOP-Request using
the Event Manager interface. The request is placed in a queue inside the Manager
class, where the System class can access it, as seen at 2©. Recognizing that CPU 0
is finished, the System creates a state change action item with the STOP-command
and puts it inside the command queue, addressed from CPU 0, as can be seen at 3©.
Eventually CPU 0 is unblocked by the Event Manager, as depicted in Figure 4.5,
and checks its command queue. Since the STOP-command has been registered, the
Processor changes its state to STOPPED in 4© and terminates.
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As said above, this mechanism ensures that no event causing a state change gets
lost or reordered. Even if, for example, the CPU’s control flow is at 1© (because it
needs to be paused) and at the same time an external event causes a state change to
STOPPED because the user closed the Screen application. This would result in two
action items being placed inside the command queue, which are then executed one
after the other; first a CPU STATE CHANGE PAUSE, and, after going to sleep and
waking up again, a CPU STATE CHANGE STOP.

Simulation Event Manager Figure 4.7 provides a detailed view inside the Sim-
ulation Event Manager. The left block depicts a Sender, which is, in our case, a
Processor or a user interrupt handler, and the right block displays a Receiver, which
would be the System. The middle part shows provided methods allowing access to
indicated functionality. Any structure using the Manager’s methods to send events
is called a Sender, whereas a Receiver can be any structure listening for event no-
tifications and handling them, if they are present. The Manager uses a queue to
store events. This queue is synchronized with a mutex and a condition variable
(see Section 3.4 for details).

Sender To send a request, the methods send cpu event or send system event are
used. Those methods automatically select the correct event type and need an
event reason as an argument. send cpu event additionally needs the id of the
sending CPU. Directly after entering the method, the event queue is locked
with a mutex (QM). This assures only one caller can access the queue at a
time. An event item is created with the given arguments and inserted in the
event queue. Afterwards, a broadcast is executed for the queue condition
variable (QCV) to wake up all waiting threads and thereby notify them about
the pending work. As long as the event is not handled, the Sender will be
blocked at the QCV with the corresponding QM. While waiting at the QCV,
the QM, which protects the event queue access, is released. If not, a Receiver
would not be able to retrieve events for handling. When all events are pro-
cessed, the Sender gets a notification, wakes up from waiting at the QCV,
releases the queue and exits the method.

Receiver A Receiver uses two methods to mark the beginning and end of a han-
dling phase. These are start event handling and end event handling. Internally
these methods lock and release the QM. If another component is currently
modifying the event queue by reading, removing or adding events, the Re-
ceiver has to wait at the start method until the Sender is done. Of course, this
also works the other way around. After locking the QM, the Receiver invokes
the wait for events method and blocks until new events arrive. Internally, the
manager checks for events inside the queue and sends the Receiver to sleep
at the QCV, if the queue is empty. When the broadcast signal from the Sender
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reaches the QCV, it will wake up the Receiver. Assuming events are pend-
ing, it calls the get next event method, which retrieves an event item from the
queue and returns it. If the necessary work has been done, the event handled
method is called for the corresponding item. This call will set a handled-flag in
the event item and wake up all Senders waiting at the QCV. To ensure only
the Sender responsible for the request continues with its work, it can check the
handled-flag of its own item. If the Sender was woken up by mistake, it goes
to sleep again. This can happen if two or more senders are waiting for their re-
quest to be handled. Since a broadcast is used to wake up waiting Senders, all
senders are woken up, even if only one of the pending requests has been han-
dled so far. When all events are processed, end event handling is called and
the QM is released. ARCSIM’s System will loop back to start event handling
and wait for new tasks to handle.

Figure 4.7: Detailed view inside the Simulation Event Manager

Figure A.1 and A.2 in Appendix A show an example implementation for Sender
and Receiver.
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4.1.4 Detailed Parallel Simulation Loop of System and Processor

After explaining single components of the decoupled main loops, the following
shall now provide an overview of the complete picture. Figure 4.8 and 4.9 display
the detailed main loop of System and Processor.

The Processor’s Main Loop consists of two parts. Box 1© and 2© on the right side
show the state handling whereas the logic in box 3© on the left is responsible for
state changes. Blue boxes indicate a direct state change and the green box repre-
sents a target program execution cycle. The control flow starts with an initializa-
tion part on top, where the first state is set to RUNNING, and enters the loop. The
first operation on entering the loop is deciding if a state change action is present
or not. If there is one, control flow goes to the left. In box 3© the state change
action is evaluated and executed. Every change has a function like pause cpu or
continue cpu, which stops or restarts timers or logs current statistics. If the state is
set to STOPPED, the main loop exits. Every other state change returns to the loop
entrance. If no change is pending, the control flow continues on the right side.
Box 1© indicates the RUNNING mode, where the target program is executed, and
box 2© encompasses the PAUSED state, where the CPU goes to sleep by waiting at a
sleep condition variable (SCV).

At first, in RUNNING state, the simulator checks the last step result, which is set for
each target program execution step. Depending on the last executed instructions
the Processor continues or sends a PAUSE or STOP request using the Event Manager.
Handling the sleep mode is protected by a sleep mutex (SM) and an additional
state change action check-up. This assures that the Processor does not miss any
wake-up call. Without this protection it is possible that a wake-up call with its
corresponding state change is set, while the Processor’s control flow has already
passed the decision in the middle but not yet reached the SCV. A deadlock would
be the result. Now the System has to acquire the SM before setting a state change. If
the Processor has already reached the SCV, the SM is free. If the CPU is in between,
the System blocks until the CPU goes to sleep.
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Figure 4.8: Detailed diagram of the parallel Processor simulation loop.
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The Systems’s Main Loop can also be split up into two different parts. The upper
part in box 1© indicates sleeping at the event queue, while box 2© encompasses
event handling depending on the given event reason. Access to the Event Manager
interface is formatted in italic letters.

As before, it all starts with an initialization phase, where all Processor threads are
spawned and started. Upon entering the main loop in box 1©, start event handling
is called, which locks the event queue. If no event is pending, the System goes to
sleep with wait for events. It awakes upon incoming events and handles them by
calling get next event.

Box 2© shows the control flow for different events. Depending on the given rea-
son, a state change action is set in the corresponding CPU’s state machine. A
SYS STOP ALL event is an external event and invokes a STOP action for all CPUs.
An action Set always checks, if the corresponding CPU is in the PAUSED state and
wakes it up, if necessary. Afterwards, the Event Manager is notified by marking
the event as handled. If all Processors have been told to stop, the main loop is left
and the ARCSIM terminates after all CPUs have reached their STOPPED state.
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Figure 4.9: Detailed diagram of the parallel System simulation loop.
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4.1.5 Synchronizing Shared Resources

Since multiple Processor instances are now working concurrently, all of them need
access to shared resources. In order to avoid errors and race conditions, this access
needs to be synchronized.

ARCSIM’s architecture model contains a global memory, which among other things
holds the target program. It is accessed on a per page basis, where every memory
page has a size of 8 KB. Each Processor instance has a private page cache, where
recently used memory pages are stored for fast access. The page cache is also help-
ful in avoiding repeated translations of target memory addresses to host memory
addresses, which is quite costly (see Section 3.3.4 for details about ARCSIM’s Pro-
cessor caches). If a page can not be found in the private page cache, it is requested
from the global memory by a call to get host page. This method returns a reference
to a region of allocated memory. If it is not yet allocated, this will be done at the first
access. The given reference is then stored in the page cache, ready to be accessed.
In order to support multiple calls, the method get host page has been synchronized
with a Scoped Lock.

This synchronization method is designed analogously to JAVA synchronized meth-
ods and is based on a mutex. It works by creating a local Scoped Lock object at the
method’s entrance. The constructor expects a mutex, which is acquired immedi-
ately. If a different thread is already using the method, this mutex will be blocked.
Upon method exit, the local lock object’s destructor is called automatically, which
releases the mutex. (see Figure A.3 in Appendix A for a Scoped Lock example)

As mentioned in Section 3.3, ARCSIM supports simulation of external devices.
These devices use Memory Mapped IO, which means regions of the architecture’s
memory are reserved for device specific data. If the simulation loop or a Proces-
sor wants to access a device, it writes to or reads from the corresponding memory
region. If a target program is, for example, using graphical output, corresponding
data is written to memory and displayed by a screen device running in a separate
thread. Since memory access is already synchronized, access to external devices
does not need additional work. Of course, external devices need to be adapted
for multiple cores. The screen device, for example, is able to show the output of
multiple cores.

A rather basic but nevertheless important synchronization is used to display ARC-
SIM’s trace output. Depending on the configured debug level, more or less tracing
information is printed to the terminal. By using a synchronized string stream, all
threads can log concurrently, and a small header indicating the currently printing
CPU helps to identify messages.
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4.2 Optimizing the Multi-Core Simulator

The previous section showed how the ARCSIM simulator was extended to enable
the simulation of multiple cores by separating the main loop, implementing an
efficient and flexible communication system and synchronizing shared resources.
The following section will give a detailed overview of the additional optimizations
that have been performed for ARCSIM’s High-Speed mode in order to achieve high
multi-core simulation performance.

4.2.1 Centralized JIT DBT Compilation

Section 3.3.3 explains the functionality of single-core ARCSIM’s High-Speed mode.
The Processor’s main loop interprets a target application and collects statistics on
executed code traces. If a code trace is executed frequently, it is recognized as ”hot”
and dispatched to a parallel JIT DBT task farm, where a translation worker thread
translates the hot trace to native code. As soon as a translation is available for
the currently interpreted trace, ARCSIM switches to native mode and executes the
native code directly, which results in a significant speed-up.

When the simulator executes a multi-threaded target binary, application threads
are assigned to the cores of the target architecture model. It can now happen that
the same code trace is interpreted by different Processor instances, especially for
data parallel applications. Consider an algorithm which transforms a matrix. To
accelerate the calculation, each row of the matrix is processed by a different thread.
It is now possible that the same calculation is applied multiple times to each row
but by different cores. If every Processor has its own JIT DBT translation work-
ers and translates hot traces locally, lots of redundant translation work would be
performed since the code trace corresponding to the matrix row calculation is trans-
lated for each core separately. Therefore, an optimization is to share translated code
traces between different CPUs by using a single centralized JIT DBT Task farm and
multi-level translation caches.

In addition to the private translation cache per core, another cache is added to the
architecture which is only accessible by translation worker threads. This so called
second level cache holds recently translated code traces of all participating cores in
contrast to the private caches. It helps to avoid redundant translation work and is
used to share translations between cores. To eliminate duplicate work items in the
translation process, every item is added to a hash table. Every core can now register
interest in a specific translation in this hash table if a corresponding work item is
already in progress. These two mechanics are explained in detail in Section 4.2.2
and 4.2.3.
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Figure 4.10: Software architecture of the multi-core simulation capable ISS using parallel
trace-based JIT DBT.
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Figure 4.10 shows the software architecture of the multi-core simulator and how
single components interact during High-Speed simulation. The functionality of a
single interpreter instance is represented by the flow chart in the upper part la-
beled 1©. The interpreter’s functionality does not change for multi-core simula-
tions, and therefore it continues to work as described in Section 3.3.3. Encountered
code regions are either interpreted or executed natively, if a translation is avail-
able. At the end of each trace-interval, hot translations are dispatched to a Trace
Translation Priority Queue 4©.

This queue, however, is now a shared data-structure, which is accessible by all
concurrently running interpreter instances inside the different Processor threads 3©.
To make sure the most important traces are translated first, a priority queue is used.
Importance of a translation work item is determined by a combination of execution
frequency and time since the last execution of the corresponding code trace.

A single centralized JIT DBT Task farm labeled with 6© in Figure 4.10 translates
hot traces. Corresponding translation workers run in separate threads, parallel to
the Processor simulation loops and the System thread. One major benefit of this
architecture is that compilation latency is hidden by performing it in parallel with
the main simulation loops of the CPUs.

As soon as a translation work item has been dispatched to the priority queue, it is
dequeued by the next available translation thread 5©. During native code genera-
tion, the same translation steps are performed as described in Section 3.3.3. Target
instructions are first mapped to C-code functions, transformed into the LLVM inter-
mediate representation, optimized by standard LLVM compiler passes and eventu-
ally compiled and linked to native code.

Like the single-core High-speed mode, the multi-core version uses adjustable trans-
lation units and a light-weight translation scheme. This scheme only records basic
block entry points as nodes and pairs of source and target entry points as edges to
construct a CFG.

4.2.2 Multi-Level Translation Cache

Since there are now centralized translation workers, it is possible to share transla-
tions between cores and avoid repeated translation of identical traces. This goal is
achieved by using a multi-level translation cache.

Translated code traces can be identified by the address of the basic block, which
is the trace’s entry point. Each Processor has a private translation cache, where
recently executed and translated code traces are stored for quick access. If the in-
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terpreter of a core encounters a new basic block, it looks up the corresponding ad-
dress in the private translation cache. If an entry matches the basic block’s physical
address, a function pointer is returned which can be called to execute the corre-
sponding translation in native code (see 1© in Figure 4.10).

The second level cache is a data structure that is only accessible by the JIT transla-
tion workers (see 6© in Figure 4.10). Every time a worker finishes translation of a
work unit, it registers the native trace in the second level cache. Afterwards, it is
also registered inside the private first level cache of the processor which requested
the translation. As soon as another CPU dispatches an identical work item, the
responsible JIT worker checks the second level cache for already existing transla-
tions. If a matching entry is present, the corresponding translation is registered
directly for the requesting CPU. That way translations between different cores can
be shared and redundant compilation work is avoided.

Depending on the chosen granularity of translation units, determining if a transla-
tion is in the second level cache may be more complicated than only checking if the
physical addresses match. If the simulator uses page-based translation units, dif-
ferent cores can take different paths through the CFG, even if they start at the same
entry point. The corresponding native code would be different between those two
traces. To solve that problem, a fingerprint is created for the trace and additionally
used to identify it. The next section gives more details about that mechanism.

Figure 4.11 shows the algorithm using the second level cache in pseudo code nota-
tion. The upper half (line 1 to 14) is executed by the Processor class, whereas the
lower part (line 16 to 30) belongs to the TranslationWorker class. After fetching the
next trace in line 2, the Processor checks the private translation cache, to see if a
translation is present for the current trace. If there is one, it is retrieved from the
cache in line 6 and executed in line 12; if not, a work item is created in line 8 and
added to the translation work queue.

The translation worker waits for upcoming tasks in line 17, wakes up as soon as a
new item is present and fetches it from the translation work queue in line 19. Before
the translation process starts, the worker checks the second level cache in line 22 if
a translation for the given trace is registered already. If there is one, it is retrieved
from the cache in line 23; if not, the item is translated in line 25 and registered as a
new item in the second level cache in line 26. Finally, the corresponding translation
is registered for the requesting core in line 29.
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1 CodeTrace t r a c e = g e t n e x t t r a c e ( ) ;
2 T r a n s l a t i o n t r a n s = Null ;
3 i f ( t rans la t ionCache . h a s t r a n s l a t i o n ( t r a c e . id ) ) {
4 t r a n s = t rans la t ionCache . g e t t r a n s l a t i o n ( t r a c e . id ) ;
5 } e lse {
6 WorkItem item = create work i tem ( t r a c e ) ;
7 add item to queue ( item ) ;
8 }
9

10 i f ( t r a n s = Null ) e x e c u t e t r a n s l a t i o n ( t r a n s ) ;
11 e lse i n t e r p r e t t r a c e ( t r a c e ) ;
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 wait for work ( ) ;
14
15 WorkItem item = fetch i tem from queue ( ) ;
16 T r a n s l a t i o n t r a n s = Null ;
17
18 i f (2 ndLevelCache . h a s t r a n s l a t i o n ( item . id ) ) {
19 t r a n s = 2ndLevelCache . g e t t r a n s l a t i o n ( item . id ) ;
20 } e lse {
21 t r a n s = t r a n s l a t e i t e m ( item ) ;
22 2ndLevelCache . a d d t r a n s l a t i o n ( t r a n s ) ;
23 }
24
25 item . core . a d d t r a n s l a t i o n ( t r a n s ) ;

Figure 4.11: Algorithm implementing second level cache. The upper half is part of a Pro-
cessor and the lower half belongs to a Translation Worker.

Figure 4.12 shows an example of the usage of the second level translation cache.
The initial situation in picture 1© is as follows: Two traces A and B have already
been translated. Therefore, an entry for each of them exists in the second level
cache. The translation task for A was dispatched by CPU 0 and the task for B by
CPU 1. As a result, the private caches of those two cores have a corresponding entry
as well.

In the first picture, CPU 0 encounters the same trace B that has already been trans-
lated for CPU 1. Since there is no entry in CPU 0’s private cache, a task B is dis-
patched and enqueued. In picture 2©Worker 0 is free and dequeues the new task.
Before translating trace B, Worker 0 checks the second level cache for already exist-
ing translations 3©. Since B was translated already for CPU 1, the worker discards
the task and the private cache of CPU 0 is updated with the translation for B from
the second level cache 4©.
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Figure 4.12: Using a second level cache to avoid repeated translations.
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4.2.3 Detection and Elimination of Duplicate Work Items

Using a multi-level translation cache avoids repeated translation of work items,
which have already been translated. But what happens if two or more cores add
translation tasks directly after each other? Assume CPU 0 dispatches a trace A,
which has not yet been translated for any core. Almost at the same time CPU 1
dispatches an identical trace, while A from CPU 0 is still in translation process. In
that case no translation for the task from CPU 1 is present in the second level cache
and it is added to the queue as well. In this case, the same translation would be
performed twice. To detect and eliminate those duplicates, the trace fingerprint
mentioned in the previous section comes into play.

A trace fingerprint is a unique1 identifier generated by a hash function, which pro-
cesses the physical addresses of all basic blocks along the trace. This mechanic
assures that, even with page-based translation unit sizes, different paths through a
memory page can be identified. This fingerprint is used to determine whether two
tasks are the same trace or not.

A hash table stores lists of all tasks which have a particular key as their fingerprint.
When a translation task is being dispatched by a core, the hash table is checked,
whether an entry for the corresponding fingerprint already exists. If an entry is
present, it means an identical task is already in the process of being translated.
Therefore, the new task is added to the hash table entry’s list and not enqueued in
the priority queue. As soon as the identical task has been translated, all CPUs listed
for the fingerprint in the hash table are updated.

This technique, in addition to the shared caching of translations described in Sec-
tion 4.2.2, has the dual effect of reducing the waiting period between the dispatch of
a task and the receipt of its translation for many cores. It also reduces the amount of
similar tasks in the work queue, resulting in a greater percentage of the simulated
code being translated earlier.

Figure 4.13 shows the algorithm from Figure 4.11 extended with the mechanic to
detect and eliminate duplicate work items. If the Processor does not find a trans-
lation for the current trace in the private cache, it creates a work item as indicated
by line 7. Before the item is added to the work queue, an additional check has been
added. The hash table holding duplicate items is checked in line 8 for an existing
entry matching the fingerprint of the current trace. If an entry is registered, the Pro-
cessor adds itself to the entries list in line 10 and discards the work item in line 11;
if no entry is present, a new one is created in line 13, with the fingerprint of the
current trace and the Processor as the first entry in the corresponding list. Only in

1Since the fingerprint is created by a hash-function using physical block addresses, it is not guar-
antied to be unique, but the probability is high.
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1 CodeTrace t r a c e = g e t n e x t t r a c e ( ) ;
2 T r a n s l a t i o n t r a n s = Null ;
3 i f ( t rans la t ionCache . h a s t r a n s l a t i o n ( t r a c e . id ) ) {
4 t r a n s = t rans la t ionCache . g e t t r a n s l a t i o n ( t r a c e . id ) ;
5 } e lse {
6 WorkItem item = create work i tem ( t r a c e ) ;
7 i f ( dupl i ca teTable . has entry ( item . id ) ) {
8 DupEntry entry = dupl i ca teTable . g e t e n t r y ( item . id ) ;
9 entry . add core ( core ) ;

10 discard work item ( item ) ; f
11 } e lse {
12 dupl ica teTable . add entry ( item , core ) ;
13 add item to queue ( item ) ;
14 }
15 }
16
17 i f ( t r a n s = Null ) e x e c u t e t r a n s l a t i o n ( t r a n s ) ;
18 e lse i n t e r p r e t t r a c e ( t r a c e ) ;
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 wait for work ( ) ;
21
22 WorkItem item = fetch i tem from queue ( ) ;
23 T r a n s l a t i o n t r a n s = Null ;
24
25 i f (2 ndLevelCache . h a s t r a n s l a t i o n ( item . id ) ) {
26 t r a n s = 2ndLevelCache . g e t t r a n s l a t i o n ( item . id ) ;
27 } e lse {
28 t r a n s = t r a n s l a t e i t e m ( item ) ;
29 2ndLevelCache . a d d t r a n s l a t i o n ( t r a n s ) ;
30 }
31
32 DupEntry entry = dupl i ca teTable . g e t e n t r y ( item . id ) ;
33 foreach ( Processor core in entry . cores ){
34 core . a d d t r a n s l a t i o n ( t r a n s ) ;
35 }
36 dupl ica teTable . remove entry ( item ) ;

Figure 4.13: Algorithm for second level cache and detection of duplicate work items. The
upper half is part of a Processor and the lower half belongs to a Translation Worker.
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that case is the work item dispatched to the queue, as seen in line 14.

The translation worker did not require much modification. The additional func-
tionality can be seen beginning in line 35. As soon as a translation is present, either
retrieved from the shared second level cache or freshly created, the worker fetches
an entry from the hash table matching to the fingerprint of the translated trace. In
line 36 and 37 the private caches of all cores listed in the hash table’s entry are up-
dated with the translation. Afterwards, the entry is removed from the duplicate
hash table, as the translation task is completed.

Figure 4.14 shows an example of the usage of the fingerprint to avoid identical work
items. The initial situation in picture 1© is the same as at the end of Figure 4.12.
Additionally a hash table has been added on the right side, which has a fingerprint
as the key and CPUs as corresponding task entries.

In 1© CPU 0 dispatches a task C to be translated. Since there is no entry for the
fingerprint of C in the hash table, a corresponding one is created and the task from
CPU 0 is appended to the list. In picture 2©, CPU 1 dispatches an identical task C.
Before the task is enqueued, the hash table is checked for already existing finger-
prints matching the trace of C. Since there is one present, the task from CPU 1 is
discarded and CPU 1 is added to the list. The next free worker fetches task C from
the queue and translates it, since there is no entry in the second level cache 3©. In
the last picture 4©, the translation is done and the second level cache is updated.
After checking the hash table, the private caches of CPU 0 and CPU 1 are updated
as well.
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Figure 4.14: Using a trace fingerprint to avoid identical work items.
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4.3 A Pthread-Model for libmetal

In order to run multi-core binaries, the bare-metal library libmetal, as introduced
in Section 3.3.6, has been extended. Aside from a basic multi-core mechanic to
access the current core ID and the overall number of cores, an implementation of
the POSIX thread standard interface has been created (see 3.4 for more details about
pthreads). The interface allows standard multi-core benchmarks like SPLASH-2
to be built and executed without changes to their program code.

4.3.1 libmetal for Multiple Cores

To allow a target program access to the core ID and the overall number of cores,
an additional auxiliary register has been added to ARCSIM’s Processor model. The
16 bit register holds the core ID of the corresponding CPU in the first 8 bits and the
overall number of cores in the remaining ones. Two functions, get cpu num() and
get num procs(), are provided by the libmetal library and can be called from a
target program.
The implemented pthread interface fully supports thread creation and joining,
as well as the usage of pthread mutexes, condition variables and semaphores.
However, the implementation is simplified in terms of number of threads allowed
per core. Since the implementation of a full preemptive scheduler would have ex-
ceeded the scope of this study, only one thread per core is allowed. This approach
is permitted by the pthread specification and therefore POSIX compliant. If a new
thread is created, it runs on its own simulated core. If no core is available, thread
creation fails. Mutexes are implemented using spin locks based around the AR-
COMPACT atomic exchange instruction explained in the next section.

4.3.2 Atomic Exchange Operation

The Atomic Exchange instructions in the ARCOMPACT instruction set are utilized
for explicit multi-core synchronization. They are intended to atomically exchange
a value in register with a value in memory. This is used during multi-core syn-
chronization to avoid context switches, for example, with a lock, while a core is in
a critical section of the target program. In ARCSIM, this is implemented using a
global simulator lock for all atomic exchange instructions, to accurately model the
hardware effects of the instruction. This means that the underlying x86 hardware
synchronization instructions are used to implement the atomic exchange instruc-
tion; in practice, it maps to a single x86 instruction and can therefore be executed
very quickly.
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Chapter 5

Empirical Evaluation

The parallel JIT DBT multi-core simulator has been evaluated on over 20 bench-
marks form EEMBC’s MULTIBENCH and Standford’s SPLASH-2 benchmark suites
(see Section 3.5 for details about the suites). This chapter describes the experimental
approach and presents the results for speed and scalability of the extended ARCSIM

simulator.

5.1 Experimental Setup and Methodology

The simulator has been evaluated against all 14 embedded application kernels pro-
vided by the MULTIBENCH 1.0 benchmark suite. Each application kernel is ex-
ecuted as a separate workload with a varying number of JIT translation worker
threads. Some of the kernels are not multi-threaded, so in these cases a separate
instance of the kernel is executed on each of the simulated cores.

The SPLASH-2 benchmark suite comprises twelve benchmarks, however, only ten
were used for the evaluation. It was not possible to build versions of fmm and
water-nsquared which could run on 64 cores, so these are excluded from the
results. In the case where contiguous and non-contiguous versions of the same
benchmark were available, the contiguous version was built.

The results are reported in terms of MIPS achieved by the simulator. Each simulated
core can calculate its own MIPS rate, where the number of instructions the core has
executed is divided by the length of time from when the core itself starts to execute
instructions, and when the core is halted. These individual MIPS rates are summed
to provide the total simulation rate.
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Consider the following calculation for a number of n simulated cores, where Rtotal

is the overall MIPS rate of a simulation run and rx is the MIPS rate of core x:

Rtotal = r0 + r1 + ...+ rn−1 + rn

With tend and tstart as start and halt time of core x and itotal as executed instructions
by core x, the MIPS rate for a single core is calculated as follows:

rx =
tend − tstart

itotal

Figure 5.1 shows a calculation example for four simulated cores. All cores start
separately from each other at tx start, run for various amounts of time and end at
tx end. After the simulation each core has a specific amount of executed instructions
indicated by ix in the circles below. These, together with the corresponding core
execution times, lead to a core MIPS rate of rx and their accumulation results finally
in a total simulation MIPS rate of Rtotal.

Simulation 

Start

Core

0

Core

1

Core

2

Core

3

t0_start

t1_start

t2_start

t3_start

Simulation 

End

t0_end
t1_end

t2_end
t3_end

i0 i1 i2 i3
Instructions

per core

r0 r1 r2 r3+ + + = RtotalMIPS Rate

Figure 5.1: Calculation example of the total simulation MIPS rate for four simulated cores.
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Three different test sets are presented in this study to evaluate ARCSIM’s behavior
concerning the following specific properties:

MIPS rate It is demonstrated for all 24 benchmarks, how their MIPS rate changes
as the number of cores used for simulation increases from 1 to 64.

Speed-up The speed-ups for each benchmark and core configuration over the
single-core configuration are shown, in terms of elapsed time between the
point where all cores are ordered to start executing and when all cores have
halted. It is presented in form of instruction throughput relative to single-core
execution.

Throughput =
MIPSmulti−core

MIPSsingle−core

Scalability Three benchmarks were chosen from each of the two suites, and it is
shown how their MIPS rate changes as simulated cores are scaled up to 2048
in the simulator.

Each benchmark and core configuration was run 5 times, with the arithmetic mean
taken from these runs to present the results.

The system used to run the simulator was an x86 host with 4 Intel Xeon L7555
1.87 GHz (8-core) processors with hyper-threading disabled, resulting in 32 host
cores being made available to the openSUSE 11.3 Linux operating system. The
system also had 64GB of RAM available, and all experiments were run under con-
ditions of low system load.

5.2 Bare-Metal POSIX Multi-Threading Support

As mentioned in Section 3.3.6 and 4.3, the light-weight libmetal library was used,
which provides the essentials of operating system functionality to run the bench-
marks on bare-metal hardware and within the simulator. This library provides fea-
tures such as startup code, I/O device management, memory management prim-
itives, and in particular basic multi-threading support in the form of a pthreads
API.

The restrictions for libmetal’s thread implementation is permitted by the
pthreads specification but differs from the approach taken, for instance, by
UNISIM [71] where threading support is emulated by the simulator. This requires
applications to be linked against a pthreads emulation library which re-routes
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pthreads API calls to trigger simulator intervention such as suspending or wak-
ing up of simulated cores. This study’s approach, in contrast, produces binaries
that can be run both on real hardware and in the simulation environment without
modification.

5.3 Summary of Key Results

The results shown in Figures 5.2 and 5.3 demonstrate that the initial target of ”1,000
to 10,000 MIPS” [8] was easily attained, with seven of the benchmarks exceeding
20,000 MIPS when simulating a 32-core target. This is better than the performance
of a theoretical 600 MHz 32-core ASIP. For the SPLASH-2 fft benchmark a max-
imum overall simulation rate of 25,307 MIPS is achieved for a 64-core simulation
target, whilst on average 11,797 MIPS are provided for the same simulation target.
For large-scale configurations of up to 2048 cores the results shown in Figure 5.4
demonstrate the ability of the ARCSIM simulator to scale with the number of pro-
cessors and to sustain its simulation rate beyond the point at which the number of
simulated cores exceeds those of the host system.

5.4 Simulation Speed

All of the MULTIBENCH baseline three-core1 simulations exceed 1,000 MIPS, with
rgbhpg03 reaching 3,100 MIPS. Due to their higher complexity the single-core
performance of the SPLASH-2 benchmarks ranges between 100 to 225 MIPS. On the
other hand, they exhibit far greater scalability (see Section 5.5).

Simulating 64 target cores, simulation rates in excess of 20,000 MIPS are achieved
for fft and volrend from SPLASH-2, and for md5, rgbcmyk, mpeg2, rgbyiq03,
and rgbhpg03 from MULTIBENCH. Only 5 out of 24 applications fail to deliver
more than 3,200 MIPS (equivalent to 100 MIPS simulation rate per host core) while
the average performance across all benchmarks for this configuration is close to
12,000 MIPS.

Not all benchmarks maintain this simulation rate as the number of cores increases,
showing that simulation performance is application-specific. For instance, the
MULTIBENCH networking benchmarks (ippktcheck, ipres, tcp) show little, if

1The MULTIBENCH test harness infrastructure runs in separate threads and therefore already
needs two cores. This is the reason why core configurations for the MULTIBENCH tests are not al-
ways a power of two.
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Figure 5.2: Simulation rate in MIPS (top chart) and throughput relative to single-core exe-
cution (bottom chart) using the SPLASH-2 benchmark suite for varying multi-core configu-
rations of the ARCSIM ISS.
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Figure 5.3: Simulation rate in MIPS (top chart) and throughput relative to three-core execu-
tion (bottom chart) using the EEMBC MULTIBENCH benchmark suite for varying multi-core
configurations of the ARCSIM ISS. Note that the minimum MULTIBENCH core configura-
tion is three due to the test harness infrastructure.
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any, improvement over the baseline for higher numbers of simulated cores. The
profile of the instructions executed by these benchmarks indicates a very high rate
of memory accesses and memory-dependent branches which quickly saturate the
available memory bandwidth of the host system. These findings are in line with
the data sheets provided by EEMBC [66].

5.5 Scalability

It is important to evaluate how the simulator scales beyond the number of host pro-
cessor cores for simulating tomorrow’s many-core systems on today’s commodity
hardware. Most benchmarks demonstrate that the simulator scales well up to the
number of physical cores on the host. Beyond this point occasionally modest fur-
ther improvements can be seen (e.g. cholesky, lu, and md5) as shown in Fig-
ure 5.4.

For the same seven benchmarks that deliver the highest simulation rates, linear
scalability can be observed as the number of target cores is increased up to 32.
Other benchmarks such as ocean, lu, cholesky, barnes, raytrace, and x264
do not achieve such high aggregate simulation rates, but still scale favorably.

For six representative benchmarks (three from each benchmark suite) this study
shows scalability up to 2048 simulated target cores in Figure 5.4. Chart 1© in Fig-
ure 5.4 shows the best result, with cholesky continuing to scale from 9,767 MIPS

for 32 cores, to 17,549 MIPS for 2048 cores, with the performance always increasing.
Chart 4© in Figure 5.4 shows a similar result for md5.

In Figure 5.2 super-linear scalability can be seen for a number of benchmarks (e.g.
fft, ocean, volrend, cholesky). This is due to excessive synchronization in the
benchmarks beyond 64 cores, and the fact that the ARCSIM simulator can execute
tight spin-lock loops at near native speed. It is a well-known fact that the SPLASH-2
benchmarks attract high synchronization costs for large-scale hardware configura-
tions, as shown by other research [29]. The MULTIBENCH results are not affected in
the same way due to less synchronization.
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Figure 5.4: Results for selected benchmarks from SPLASH-2 1© 2© 3© and EEMBC MULTI-
BENCH 4© 5© 6© demonstrating the scalability with the number of simulated target cores.
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5.6 Comparison to Native Execution on Real Hardware

Chart 1© of Figure 5.5 shows a comparison between the ARCSIM simulator and two
hardware platforms (FPGA and ASIP, see Section 3.3.5) in terms of MIPS. The ap-
plication is a parallelized fractal drawing algorithm, executed across 12 cores. As
mentioned in Section 3.5.3, this application was chosen because of its low memory
footprint and its embarrassingly parallel nature, thus avoiding application scala-
bility issues.

Actual FPGA performance is 249 MIPS. The performance of a 600 MHz ASIP imple-
mentation is also shown which achieves an execution rate of 2,985 MIPS. On the
other hand, the instruction set simulator reaches a simulation rate of 6,752 MIPS,
thus surpassing a silicon implementation by more than a factor of 2 for this appli-
cation.

For equivalent configurations, the simulator consistently outperforms the theoret-
ical maximum of the FPGA on a per-core basis. The 12-core FPGA implementation
of the multi-core system is capable of 50 MIPS per core. On the contrary, across all
benchmarks, the lowest per-core simulation rate for a 16-core target was 105 MIPS,
attained in the SPLASH-2 radiosity benchmark. These results show that even in
the worst case the simulator maintains more than twice the theoretical maximum
execution rate of the FPGA. Compared to the average simulation rate of 11,797 MIPS

across all benchmarks, the theoretical maximum of 600 MIPS for a 12-core FPGA im-
plementation is an order of magnitude slower.
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Figure 5.5: Comparison of simulator and hardware implementations. 1© shows a compari-
son of maximum achievable simulation rate in MIPS for a 12-core configuration running a
parallel Mandelbrot fractal benchmark on an FPGA, ASIP, and ISS platform. 2© depicts the
ratio of interpreted vs. natively executed instructions on the ISS platform.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

For this thesis an innovative Instruction Set Simulator has been developed, which is
capable of simulating multi-core target architectures whilst fully utilizing a multi-
core host system. It is based on a carefully designed software architecture, which
can handle complex synchronization tasks common to many parallel applications.
Every core of the modeled target architecture spawns in a separate thread and is
supervised by a main system thread through an event driven communication sys-
tem.

Various optimizations have been implemented, maintaining high performance and
detailed observability utilizing JIT translation mechanics. A centralized JIT DBT

task farm runs in parallel with the simulation and provides multiple translation
worker threads. The workers are fed with work items dispatched in a shared trans-
lation work queue by all participating CPU instances. The dynamic compilation in-
frastructure uses a hot spot detection mechanism to translate frequently executed
code traces to native code in order to accelerate the simulation. A hierarchy of
multi-level translation caches helps to avoid redundant work by sharing translated
traces between simulated cores. Additionally, a mechanism detects and eliminates
duplicate work items in the translation work queue.

An efficient low-level implementation for atomic exchange operations is used to
implement a light-weight multi-threading library compatible to POSIX threads,
which enables the simulator to run pthread target applications without the need
to boot an OS or apply any changes to their program code.
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The simulator has been evaluated against two industry-standard benchmark suites:
EEMBC MULTIBENCH and SPLASH-2 which comprise over 20 benchmarks repre-
senting common embedded software tasks and scientific workloads. With its in-
novative JIT DBT technique utilizing multiple host cores, unprecedented simulator
throughput of up to 25,307 MIPS and near-optimal scalability of up to 2048 simu-
lated cores was achieved on a standard 32-core x86 simulation host. The empiri-
cal results show a simulation performance advantage by two orders of magnitude
over leading and state-of-the-art FPGA architecture simulation technology [30] for
a comparable level of simulation detail.

With the results of the research work done for this thesis, a paper has been pub-
lished at the IC-SAMOS conference 2011 in Greece:

O.Almer, I.Böhm, T.Edler von Koch, B.Franke, S.Kyle, V.Seeker, C.Thompson and
N.Topham: Scalable Multi-Core Simulation Using Parallel Dynamic Binary Trans-
lation [2011] To appear in Proceedings of the International Symposium on Systems,
Architectures, Modeling, and Simulation (SAMOS’11), Samos, Greece, July 19-22,
2011

6.2 Future work

In future work a detailed interconnection network needs to be implemented to
maintain cache coherence between simulated CPUs - the current simulator only
works with local timing models per CPU and cache. As introduced in Section 3.3.3
single-core ARCSIM supports multiple different simulation modes. As this thesis
has focused on extending the high-speed JIT DBT mode to support multiple cores,
future work will aim to extend other modes such as the mode using statistical sam-
pling to drive a cycle-approximate performance model. Single-core ARCSIM is able
to simulate the boot-up and interactive operation of a complete Linux-based sys-
tem. However, the multi-core version still relies on a light-weight multi-threading
library providing common operating system tasks but does not support a full SMP
Linux.
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Appendix A

Code Excerpts

Implementation of a Sender using the Event Manager

1 void Sender : : main loop ( ) {
2 SimulationEventManager∗ event mgr = get event manager ( ) ;
3 ResultType re s = RES NONE ;
4
5 for ( ; /∗ e v e r ∗ / ; ) {
6 re s = update ( ) ;
7
8 / / c h e c k up da t e r e s u l t s
9 switch ( re s ){

10 case RES ERROR :
11 / / t h e f o l l o w i n g b l o c k s u n t i l t h e e v e n t i s h a n d l e d
12 event mgr−>send system event (EVENT ERROR ) ;
13 break ;
14 case RES THRESHOLD REACHED:
15 / / t h e f o l l o w i n g b l o c k s u n t i l t h e e v e n t i s h a n d l e d
16 event mgr−>send system event (EVENT THRESHOLD REACHED ) ;
17 break ;
18 }
19 }
20 }

Figure A.1: Sender implementation
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Implementation of a Receiver using the Event Manager

1 void Receiver : : main loop ( ) {
2 SimulationEventManager∗ event mgr = get event manager ( ) ;
3
4 for ( ; /∗ e v e r ∗ / ; ) {
5 / / S t a r t h a n d l i n g
6 event mgr−>s t a r t e v e n t h a n d l i n g ( ) ;
7
8 / / The f o l l o w i n g b l o c k s u n t i l we r e c e i v e an e v e n t
9 event mgr−>w a i t f o r e v e n t s ( ) ;

10
11 / / P r o c e s s r e c e i v e d e v e n t s
12 SimulationEventItem∗ nextItem = NULL;
13 while ( event mgr−>g e t n e x t e v e n t (& nextItem ) ) {
14 handle sim event ( nextItem ) ; / / h a n d l e e v e n t
15 event mgr−>event handled ( item ) ; / / mark e v e n t as h a n d l e d
16 }
17
18 / / End h a n d l i n g
19 event mgr−>end event handling ( ) ;
20 }
21 }

Figure A.2: Receiver implementation
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Using Scoped Locks to synchronize methods

1 c l a s s ExternalMemory {
2 private :
3 / / Mutex used t o s y n c h r o n i z e a c c e s s t o memory map
4 / /
5 arcsim : : u t i l : : system : : Mutex mem mtx ;
6
7 public :
8
9 ( . . . )

10
11 i n l in e BlockData∗ get hos t page ( uint32 phys byte addr )
12 {
13 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 / / SCOPED LOCK START
15 arcsim : : u t i l : : system : : ScopedLock lock (mem mtx ) ;
16
17 ( . . . )
18 }
19 }

Figure A.3: Scoped Lock Synchronization
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1331723. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2007.16

http://portal.acm.org/citation.cfm?id=619072.621910
http://arxiv.org/abs/cs/0309029
http://portal.acm.org/citation.cfm?id=1188299.1188411
http://portal.acm.org/citation.cfm?id=1188299.1188411
http://dx.doi.org/10.1109/MICRO.2007.16


94 Bibliography

[52] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically charac-
terizing large scale program behavior,” ACM SIGARCH Computer Architecture
News, vol. 30, no. 5, p. 45ñ57, 2002.
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50ñ64, 2009.

[64] “POSIX threads programming.” [Online]. Available: https://computing.llnl.
gov/tutorials/pthreads

http://groups.inf.ed.ac.uk/pasta/tools_arcsim.html
http://wcms.inf.ed.ac.uk/icsa/
http://groups.inf.ed.ac.uk/pasta/
http://groups.inf.ed.ac.uk/pasta/hw_encore.html
http://groups.inf.ed.ac.uk/pasta/hw_encore.html
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads


Bibliography 95

[65] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming. O’Reilly Media,
Inc., Sept. 1996.

[66] The Embedded Microprocessor Benchmark Consortium, “MultiBench 1.0
Multicore Benchmark Software,” 02 February 2010. [Online]. Available:
http://www.eembc.org/benchmark/multi sl.php

[67] T. Halfhill, “Eembc’s MultiBench Arrives,” www.MPRonline.com, vol. The
Insider’s Guide to Microprocessor Hardware, p. 8, July 2008. [Online].
Available: http://www.eembc.org/press/pressrelease/223001 M30 EEMBC.
pdf

[68] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 pro-
grams: characterization and methodological considerations,” in Proceedings of
the 22nd annual international symposium on Computer architecture, ser. ISCA ’95.
New York, NY, USA: ACM, 1995, pp. 24–36.

[69] D. H. Bailey, “FFTs in external or hierarchical memory,” The Journal of
Supercomputing, vol. 4, p. 23–35, Mar. 1990, ACM ID: 81781. [Online].
Available: http://dx.doi.org/10.1007/BF00162341

[70] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and
M. Zagha, “A comparison of sorting algorithms for the connection machine
CM-2,” in Proceedings of the third annual ACM symposium on Parallel algorithms
and architectures, ser. SPAA ’91. New York, NY, USA: ACM, 1991, p. 3–16,
ACM ID: 113380.

[71] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. A. Penry,
O. Temam, and N. Vachharajani, “Unisim: An open simulation environment
and library for complex architecture design and collaborative development,”
IEEE Comput. Archit. Lett., vol. 6, pp. 45–48, July 2007.

http://www.eembc.org/benchmark/multi_sl.php
http://www.eembc.org/press/pressrelease/223001_M30_EEMBC.pdf
http://www.eembc.org/press/pressrelease/223001_M30_EEMBC.pdf
http://dx.doi.org/10.1007/BF00162341


Typeset May 6, 2011


	Abstract
	Überblick
	Acknowledgements
	Introduction
	Contributions
	Overview

	Related Work
	Sequential Simulation of Parallel Systems
	Software Based Parallel Simulation of Parallel Systems
	Fpga-based Parallel Simulation of Parallel Systems

	Background
	Instruction Set Architecture
	Isa Classification

	Instruction Set Simulator
	Iss Advantages
	Iss Classification

	ArcSim Simulator
	Pasta Project
	EnCore Micro-Processor Family
	ArcSim Simulation Modes
	ArcSim's Processor Model Caches
	Target System Architecture
	libmetal: A Bare-Metal Library

	Posix Threads
	Thread Management
	Mutex Variables
	Condition Variables
	Pthreads in ArcSim

	Benchmarks
	MultiBench 1.0
	Splash-2
	Other Benchmarks


	Methodology
	Replicating the Single-Core Simulator
	Sequential Main Loop
	Decoupled Simulation Loops
	System-Processor-Communication
	Detailed Parallel Simulation Loop of System and Processor
	Synchronizing Shared Resources

	Optimizing the Multi-Core Simulator
	Centralized Jit Dbt Compilation
	Multi-Level Translation Cache
	Detection and Elimination of Duplicate Work Items

	A Pthread-Model for libmetal
	libmetal for Multiple Cores
	Atomic Exchange Operation


	Empirical Evaluation
	Experimental Setup and Methodology
	Bare-Metal Posix Multi-Threading Support
	Summary of Key Results
	Simulation Speed
	Scalability
	Comparison to Native Execution on Real Hardware

	Conclusions
	Summary and Conclusions
	Future work

	Code Excerpts
	Bibliography

