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Abstract

With the development of modern smartphones, mobile devices have become ubiquitous
in our daily lives. With high processing capabilities and a vast number of applications,
users now need them for both business and personal tasks. Unfortunately, battery tech-
nology did not scale with the same speed as computational power. Hence, modern
smartphone batteries often last for less than a day before they need to be recharged.
One of the most power hungry components is the central processing unit (CPU). Mul-
tiple techniques are applied to reduce CPU energy consumption. Among them is dy-
namic voltage and frequency scaling (DVES). This technique reduces energy consump-
tion by dynamically changing CPU supply voltage depending on the currently running
workload. Reducing voltage, however, also makes it necessary to reduce the clock
frequency, which can have a significant impact on task performance. Current DVFS
algorithms deliver a good user experience, however, as experiments conducted later in
this thesis will show, they do not deliver an optimal energy efficiency for an interactive
mobile workload. This thesis presents methods and tools to determine where energy
can be saved during mobile workload execution when using DVFS. Furthermore, an
improved DVFS technique is developed that achieves a higher energy efficiency than

the current standard.

One important question when developing a DVES technique is: How much can you
slow down a task to save energy before the negative effect on performance becomes
intolerable? The ultimate goal when optimising a mobile system is to provide a high
quality of experience (QOE) to the end user. In that context, task slowdowns become
intolerable when they have a perceptible effect on QOE. Experiments conducted in
this thesis answer this question by identifying workload periods in which performance
changes are directly perceptible by the end user and periods where they are impercep-
tible, namely interaction lags and interaction idle periods. Interaction lags are the time
it takes the system to process a user interaction and display a corresponding response.
Idle periods are the periods between interactions where the user perceives the system
as idle and ready for the next input. By knowing where those periods are and how
they are affected by frequency changes, a more energy efficient DVFS governor can be

developed.

This thesis begins by introducing a methodology that measures the duration of inter-
action lags as perceived by the user. It uses them as an indicator to benchmark the

quality of experience for a workload execution. A representative benchmark workload



is generated comprising 190 minutes of interactions collected from real users. In con-
junction with this QOE benchmark, a DVFS Oracle study is conducted. It is able to
find a frequency profile for an interactive mobile workload which has the maximum
energy savings achievable without a perceptible performance impact on the user. The
developed Oracle performance profile achieves a QOE which is indistinguishable from
always running on the fastest frequency while needing 45% less energy. Furthermore,
this Oracle is used as a baseline to evaluate how well current mobile frequency gover-
nors are performing. It shows that none of these governors perform particularly well
and up to 32% energy savings are possible. Equipped with a benchmark and an opti-
misation baseline, a user perception aware DVFS technique is developed in the second
part of this thesis. Initially, a runtime heuristic is introduced which is able to detect
interaction lags as the user would perceive them. Using this heuristic, a reinforcement
learning driven governor is developed which is able to learn good frequency settings
for interaction lag and idle periods based on sample observations. It consumes up to
22% less energy than current standard governors on mobile devices, and maintains a

low impact on QOE.
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Lay Summary

In recent times modern smartphones became a part of almost everyone’s daily life.
They are used both at work and at home to organise appointments, answer emails,
play games, video chat with your family, observe the stars and much more. To be
able to execute applications of different complexity and to provide smooth graphics,
mobile phone technology improved much over the last years. Screens became larger
and memory capacity increased as well as computational speed. These improvements,
however, come with a cost. They need a constant energy supply from the phone’s
battery. A mobile phone from 15 years ago had a battery lifetime of almost a week.
Unfortunately, with improved technology and a broader application selection, modern

phones usually last no longer than a day before their batteries need to be recharged.

Since battery technology does not improve as fast as computational technology, re-
searchers focus on reducing battery consumption by writing software which uses mo-
bile components in a more energy efficient way. This thesis looks at the phone’s pro-
cessor in particular. It is at the centre of most computing devices and needs high
amounts of energy. A common technique to reduce the processor’s energy consump-
tion is to change its computation speed depending on how much work the mobile phone
currently needs to do. The slower a processor works, the less energy is needed to drive
it. However, when the speed is too low, mobile users can perceive applications as slow
and unresponsive. When the speed is higher than necessary, energy is wasted. An effi-
cient processor speed selection technique must be able to find a good balance between

those two extremes to save energy and satisfy the end user.

This thesis presents methods and tools necessary to develop such a technique. In the
first part of this thesis, a method is introduced which can automatically decide if a
particular processor speed selection technique does a good job in terms of user satis-
faction and battery consumption. It is used to find the theoretical maximum amount of
possible processor energy savings which can be achieved without slowing application
responsiveness to a degree noticeable by the mobile phone user. In the second part a
processor speed selection technique is developed which directly considers how a user
perceives application responsiveness. It automatically learns which speed settings lead
to a good balance between application responsiveness and energy consumption. In so
doing, it manages to improve processor energy efficiency compared to current standard

techniques whilst providing a satisfying experience to the end user.
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Chapter 1
Introduction

With the mobile market growing stronger in recent years mobile devices have become
ubiquitous in our daily lives. According to Gartner [1|], 344 million smartphones were
sold to end users globally in the second quarter of 2016, which is a 4.3% increase
over the same period in 2015. That growing presence of mobile devices leads to a
growing application of those systems to handle every day tasks both in personal and
professional environments. With more involvement of mobile computing in everyday
tasks, industry answered this trend by developing devices with more compute power.
Unfortunately, battery technology does not scale with the same speed as computational
power. Hence, the battery life of modern phones is drastically shorter compared to
mobile devices from 10 years ago. When a Nokia 3210 developed in 1999 had enough
power for a week, modern smart phones such as an iPhone 6 or the Samsung Galaxy S6

often last for less then a day before their batteries need to be recharged.

What is the culprit of this high energy demand? Next to powerful cellular and wire-
less networking modules, large and bright screens and complex graphic accelerators,
the central processing unit (CPU) is still one of the most power hungry parts [2-
4]. Figure [I.1] displays the power consumption breakdown from a study by Torchi-
ano et al. [4]. They measured the power consumption of different mobile devices for
various usage scenarios. Each scenario was designed in a way that it would make ex-
tensive use of a particular device component. Among those components were cellular
and wireless networking modules responsible for phone calls and internet connection,
namely 3G, 2G and Wifi, as well as CPU, audio or the display. According to their data,

collected for a Galaxy Nexus S, 3G and 2G modules have the highest power consump-
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Figure 1.1: Galaxy Nexus S power consumption breakdown for different usage sce-
narios. Each bar represents a usage scenario which makes intensive use of a specific
module.

tion, closely followed by the CPU and the display. With the goal of prolonging battery

life time, this thesis will focus on improving the CPU’s energy efficiency.

The two most prominent techniques developed to reduce the CPU’s energy consump-
tion are on one hand using various sleep states while the device is idling and on the
other dynamic voltage and frequency scaling (DVFES) when it is busy. DVFS will be in

the centre of this thesis.

1.1 Dynamic Voltage and Frequency Scaling

DVES is a widely used technique to save CPU energy and prolong battery life. A
DVES algorithm lowers energy consumption by dynamically reducing the CPU’s sup-
ply voltage needed to power its logic elements. However, reducing voltage means
increasing circuit delay and the processor logic cannot keep operating at the same
clock frequency. The clock frequency of a CPU determines how many instructions per
time unit can be processed. Hence, reducing voltage also requires a reduction of the
CPU’s operating speed. A slower CPU can result in system performance reduction. To

mitigate any negative performance impact the initial idea behind DVES was to exploit
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Figure 1.2: The same task is executed on two different voltage and frequency levels.
The left side shows the task being executed on the maximum frequency. It finishes well
before its deadline. The right side shows the task’s execution with half that frequency.
Here, execution ends right at the deadline. Due to a quadratic relation between voltage
and dynamic core power, energy is significantly reduced (source [5]).

execution slack of deadline driven tasks. It is depicted in Figure[I.2]

In Figure [[.2]the same task is executed for two different voltage and frequency levels.
The task needs to be finished by a given deadline which is indicated by a dashed line.
On the left side the task is executed on the highest CPU frequency and finishes well
before it is due. The corresponding power consumption is depicted on the y-axis.
The area of the shaded box represents the energy consumption needed for the task
execution. On the right side the execution frequency is only half of the maximum.
The task needs longer to finish but still finishes before its deadline. This execution
profile uses the CPU more efficiently over the available time by leaving no idle period.
More importantly, dynamic core power scales quadratically with supply voltage (see
Section for details). This means even small voltage reductions lead to significant
energy savings. Therefore, the right hand side scenario in Figure leads to a drastic

energy reduction.

Applying the approach demonstrated for a simple example in Figure [I.2]for a realistic
mobile workload is a complex and challenging task. In a realistic mobile workload a
multitude of different tasks with different execution statistics are running at the same
time. They influence each other’s runtime by competing for execution resources. Dif-
ferent tasks can have different runtime characteristics: They can be CPU intensive by
executing instructions on the CPU most of the time, they can be memory intensive
which means they often stall while data is being moved between memory and CPU,
or they show a mixture of both properties. Changing the CPU frequency under those
conditions leads to performance changes which are hard to predict. Current standard
DVES techniques on mobile systems tackle this problem using a CPU load driven

heuristic.
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On a Linux based mobile operating system (OS) such as Android the responsible mod-
ule for DVEFS is called a CPU frequency governor. Current standard governors on
mobile devices make frequency decisions based on how much the CPU has to work
at the moment, i.e. the ratio between processor task execution time and processor idle
time. If this ratio raises above a threshold the execution frequency is raised. When the
CPU load drops the frequency is lowered again. The Linux frequency governor was
developed to work well for a broad range of different workloads, on servers, desktops
or mobile devices. This thesis, however, is driven by the assumption that in the case
of an interactive mobile workload a mainly CPU load based DVFS heuristic does not
achieve the best possible energy efficiency. In Chapter[5|an Oracle study shows that for
an interactive workload, standard mobile frequency governors need up to 32% more
energy than an Oracle driven frequency selection. This study claims, that the user
interaction intensive nature of mobile workloads allows significant room for energy
efficiency improvements using DVFS. A user perception driven frequency governor
developed in Chapter [/|is able match the Oracle profile’s energy consumption much
closer than standard governors and lies only 9.6% above it. The following section will

point out where this energy saving potential lies.

1.2 Quality of Experience

The ultimate optimisation goal when tuning a mo-
bile system is to provide a high quality of experi-
ence (QOE) to the end user.

/,\\

Quality of Experience In the literature QOE is
used as a metric to measure the total sys-
tem performance based on the end user’s

satisfaction.

Satisfaction can be measured by observing the
user’s stress level [6], polling opinion based ques-

tionnaires [7/]], measuring the stability of video

playback frame rate [8]] or the network connection
Figure 1.3: User perception chan-

' ' . nels of mobile device output. Vi-
ultimately consider observations of the executed gyq), audible and haptic.

speed [9]]. All of those metrics to measure QOE

workload taken from the user’s point of view.
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The user’s point of view The user’s point of view or the user’s perspective shall be
defined in this work as the system output as it is perceived by the user. A mobile
system uses output devices such as screen, speakers, vibration modules or LED

light indicators as an interface to the user (see Figure[l.3)).

Changing system parameters such as processor speed, memory bandwidth or cache
sizes can have a significant impact on instruction throughput and task execution times.
However, these changes are not necessarily perceptible from the user’s point of view
because they might not affect system output that is important to the user. This thesis
claims that in the user’s perceptibility of performance changes lies the key to better
DVES. When improving DVFES with the goal of maintaining a high QOE, it is impor-
tant to know which perceptible system output is of significant importance to the user
and which output is not. DVFES can then be optimised using different strategies for

system output with high influence on QOE and output with low influence.

For interactive workloads the human computer interaction (HCI) research community
identified the time a system needs to respond to a user interaction as of significant

importance to the end user.

System Response Time System response time (SRT) is the time a system needs to
respond to a user interaction. It starts with user input and ends when the user
feels that the system has finished servicing hi request. The remainder of this

thesis will use the term SRT or interaction lag interchangeably.

A large body of research work covers the search for a good SRT to satisfy the end user
(see Section [2.3). A good value depends on various factors such as the frequency or
complexity of the task initiated by the interaction or if system feedback is provided
while waiting for the final result. Current standard DVFS techniques work well for
mobile workloads when it comes to providing fast system response times. The en-
ergy saving potential lies in knowing how fast is fast enough to keep user perceived

performance on an acceptable level.

Research Question In a study by Dabrowski et al. [10] the author’s state that com-
puter systems these days are fast enough to handle most common tasks. With
battery powered devices a new question emerges: How much can you slow a

system response down with the goal of saving energy to maintain a good QOE?

I'The author of this thesis is aware that there can be male and female users. For simplicity, if a user
is addressed in the remainder of this document he will be considered to be male.
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Research Claim A DVFS technique for interactive mobile workloads can accomplish
good energy efficiency if information is available on how fast the system re-
sponds to interactions as seen from the user’s point of view. Such kinds of in-
formation helps to evaluate the effect of frequency changes on user perceptible
performance and allows to find frequency settings fast enough to maintain ac-

ceptable QOE whilst still achieving energy savings.

1.3 Motivating Example

The claim driving the research of this thesis is that DVFS for an interactive mobile
workload has the potential of gaining higher energy savings if the DVFS governor
is considering the user’s point of view, i.e. the workload execution as a user would
perceive it. Data on when device output is important to end users to achieve high QOE
helps to make energy efficient frequency decisions. This section supports this claim
by pointing out potential energy savings for an example of two specific interactions
with the device. The example is taken from the benchmark workload generated later
in this thesis (see Chapter f). In the example, frequency choices of the Ondemand
frequency governor are compared to an Oracle frequency profile. Ondemand is the
current standard governor on many mobile devices. A technique to generate Oracle

frequency profiles for interactive mobile workloads will be presented in Chapter [5

Figure|1.4|shows the execution of the two interactions including relevant system statis-
tics. The executed content shows the Pulse news application. Relevant screenshots are
shown in the centre of the figure. A finger indicates where an interaction happened
by touching the device’s screen. The first screenshot shows an article selection of the
news application. The screen is touched at the first article on the top left which opens
the corresponding text. After a transition animation between menu and article text,
the second screenshot is visible and the corresponding content can be read. From the
user’s point of view, this indicates the ending of the first interaction lag and the user
feels that the system has finished processing the interaction. After he finished reading,
he presses the back button on the bottom of the screen. This is the second interac-
tion. It results in the application going back to the article overview and ends when the

overview is fully visible again.

The bottom of Figure [I.4] shows the frequency profiles selected by Ondemand (thin
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Figure 1.4: Comparison of Ondemand and Oracle frequency governor performance
profiles for an interaction example. The screenshots in the centre show two consecutive
interactions: Selecting a news article from an overview and pressing the back button
while the article is displayed to return to the overview. The graph on the bottom shows
the frequency selection of Ondemand and Oracle governor. The boxes and timeline on

the top of the figure indicate duration and energy values for the different phases of the
interaction executions for both governors.

grey line) and the Oracle governor (thick red line). Ondemand raises the frequency
soon after the first input arrives and alternates between highest and lowest frequency
while working on opening the article. During the reading phase a few frequency spikes
appear around the end of the first interaction and towards the beginning of the second
one. When the second interaction occurs, Ondemand raises the frequency again to pro-

cess it. Ondemand selects frequencies from the whole available spectrum but mostly
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focuses on the highest and the lowest frequency. The Oracle governor only uses two
frequency levels. 1.27 GHz during the interaction lags and 1.04 GHz during the read-
ing phase. The specifics of why these frequencies were selected will be explained in

Chapter 5] where the Oracle governor is introduced.

The top of the figure shows a timeline marking start and end of the two interaction lags.
The end is marked as seen by a user, i.e. when he feels that the system has completely
processed his input. This does not necessarily correspond with the CPU being busy or
not. The red boxes with sharp corners indicate the duration of the lags while the blue
boxes with rounded corners show the duration of the reading period, i.e. where the
system appears to be idle. Inside the boxes a 7" marks the corresponding duration and
an E marks the energy consumption. The box on the top right shows total CPU energy
consumption of the Ondemand governor’s frequency choices compared to the Oracle
ones. Even though the difference in execution durations is minimal, the Ondemand

governor uses 27% more energy.

This example demonstrates for two scenarios where the Ondemand governor fails to

exploit energy saving potential and the Oracle is more energy efficient:

Overshooting The Goal A first potential energy saving can be seen when looking at
interaction lag times. The execution durations only differ for the first interac-
tion. Here the lower frequency selection of the Oracle compared to the high
spikes of the Ondemand governor leads to an increase of SRT by 100ms. Ac-
cording to various HCI research sources [11-13]], this difference is clearly below
the perceptible limit of a user, i.e. he is unable to notice this difference. The sec-
ond interaction even has the same duration for Oracle and Ondemand. Still the
Oracle needs less energy by choosing a lower frequency. This indicates that On-
demand 1is overshooting the performance settings for user interactions and could
achieve better energy efficiency without noticeable effect on QOE if selecting

lower frequencies.

Imperceptible To Users A second energy saving potential can be found in the idle
period. Even though the user already concluded that the interaction is over and
started reading the text, Ondemand is raising the frequency repeatedly. This is
due to background tasks of the application or the OS which require CPU com-
putation time. Ondemand’s heuristic raises the frequency based on CPU load

and does not consider if the user is actually able to perceive whether the current
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load is executed quickly or slowly. In the example the presented text is static,
no other output devices are being used. The medium frequency choice of the
Oracle is perfectly capable of handling all background tasks without affecting
the user’s QOE in a negative wayﬂ In so doing it uses 33% less energy during
the idle period. This indicates that Ondemand is selecting too high frequencies

at times where a difference in CPU performance is imperceptible to the user.

This example taken from the benchmark workloads generated in Chapter 4] shows how
current standard DVFES techniques on mobile devices fail to exploit energy saving po-
tential in two cases. An Oracle approach having full knowledge of the user’s point of
view can tap this potential. It does so by supplying the right amount of performance
to maintain acceptable QOE during interaction lags and keeping the performance level
low during idle periods where performance differences are imperceptible to the user.
The experiments presented in this thesis will demonstrate how energy saving potential
of this kind can be identified systematically for a representative mobile workload and
how it can be tapped at runtime to outperform the energy efficiency of current standard

DVES techniques on mobile devices.

1.4 Contributions

In pursuit of extending mobile devices’ battery life with a more energy efficient and
user perception aware DVFES technique, this thesis makes the following four contribu-

tions:

QOE Benchmark A methodology is presented to benchmark representative interac-

tive mobile workloads in terms of interaction lag dependent QOE.

Energy Efficiency Oracle Study Using the QOE benchmark an Oracle study is con-
ducted which identifies energy saving potential in an interactive mobile work-

load. The Oracle’s results are compared to current standard DVFS governors.

Runtime Interaction Lag Detection Heuristic A runtime heuristic is developed to
capture start and end of system responses as seen from the user’s point of view.

This heuristic lays the foundation for an improved DVES algorithm.

20ne could ask why the Oracle does not pick the lowest frequency if the user does not notice an
effect. As can also be seen later in Chapter [5|and as mentioned in Section[2.2.2] the lowest frequency is
not necessarily the least energy consuming one if the CPU is busy. Sprinting towards idle can need less
energy than executing with the lowest frequency and voltage.
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QOE Driven DVFS Algorithm Together with the lag detection heuristic, a DVFES al-
gorithm is presented which uses a reinforcement learning technique to tap the
energy saving potential identified in the Oracle study whilst maintaining good
QOE. It is evaluated using the QOE Benchmark.

1.5 Thesis Roadmap

Chapter 2| will provide more information on DVFS and will cover the most prominent
research areas on that topic. Furthermore, this chapter will describe the concept of SRT
as seen by the HCI research community and will summarise research development
in that area. This is followed by a description of the reinforcement learning method.
Additionally, this chapter will cover the Android Open Source Project with focus on the
graphics framework and lastly current standard CPU frequency governors of mobile

systems will be introduced.

Chapter [3| will cover closely related research on benchmarking for interactive mobile
workloads, specifically considering SRT. Also, related user perception and machine

learning driven DVES studies are discussed.

Chapter [d] describes a methodology which is able to record and replay representable
interactive mobile workloads. Furthermore, a novel technique is introduced which
considers the device’s screen output to measure interaction lag of workload executions
as seen by the user. Comparing lag measurements of the same workload executed for
different system configurations allows benchmarking the system in terms of QOE. This

benchmark is used in the following chapters to evaluate DVFS techniques.

Chapter |5 uses the QOE benchmarking methodology from Chapter 4{ to conduct an
Oracle study. It generates frequency profiles for a benchmark workload with maximum
energy savings and minimal user irritation. A novel user irritation metric is presented
which can give an irritation score to a workload execution by analysing measured
interaction lag durations. The Oracle’s frequency profile will be used as a baseline
for DVFS optimisations performed later in the thesis. Additionally, the Oracle results

are used to evaluated how well current Android frequency governors are performing.

Chapter [6] presents a detailed study of system characteristics during interaction lag

periods as seen from the user’s perspective. The collected insight is used to devise a
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heuristic which is able to track the start and the user perceived end of interaction lags

in a mobile workload at runtime.

Chapter |7| uses the interaction lag detection heuristic from the previous chapter to
develop a QOE aware DVFS governor. The algorithm is based on a reinforcement
learning method. It uses a trial-and-error approach to learn optimal frequency settings
for encountered interaction lags in an interactive mobile workload. The presented
governor is evaluated using the benchmark and irritation metric from Chapter 4 and
Chapter [5 and compared to the results of the Oracle study and standard governor

evaluation.

Chapter |8 will summarise the results presented in this thesis, draw a conclusion and

discuss future work.



Chapter 2

Background

2.1 Introduction

This chapter will present background knowledge on the concepts and techniques de-

veloped and studied in this thesis. It is separated into five parts:

Dynamic Voltage and Frequency Scaling (DVFS) The research goal of this thesis is
to improve DVES energy efficiency for an interactive mobile workload to pro-
long battery life. DVES is a technique to dynamically control processor clock
speed and voltage to reduce CPU energy consumption. Its concepts and research

background will be described in part one.

System Response Time (SRT) End user perceived time intervals needed by the sys-
tem to respond to his input, are considered in this thesis to identify critical exe-
cution phases. The second part of this chapter will give information on research
in the field of user response time in interactive workloads. It will focus on how

response time length affects end user QOE.

Reinforcement Learning (RL) The following section will describe the concept of re-
inforcement learning. This machine learning technique learns optimal system
behaviour with a trial-and-error approach. It is used in Chapter [/| to create a
user perception aware frequency governor by learning how different frequencies

affect SRT durations for different user interactions.

Android Open Source Project The Android Open Source Project (AOSP) provides

operating system sources to developers for analysis and modification. Experi-

12
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ments conducted in this study rely on instrumentations made to the Android’s
graphics framework. For a better understanding, background information on
AOSP will be presented.

CPU Frequency Governors The DVFS strategy developed in this thesis is compared
against current standard implementations on mobile devices. Details on current
standard CPU frequency governors will therefore be presented in the last section

of this chapter.

2.1.1 Terminology

To avoid confusion about the usage of the terms energy consumption and power con-

sumption in the remainder of this thesis, they shall be defined here:

Energy Consumption Energy or more specifically electrical energy is consumed over

time. It is usually measured in joules (J) or kilowatt-hours (kWh).

Power Consumption Power consumption is defined as the amount of energy con-

sumed in an instance of time. It is measured in Watts (W).

2.2 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVES) is a technique to reduce the CPU’s
energy consumption while the processor is busy. The general approach is to dynami-
cally reduce CPU processing speed and energy consumption in non-critical execution
phases. The two main challenges are on one hand to identify critical and non-critical
phases in a given workload and on the other to predict how frequency changes affect
the system’s performance while executing that workload. The following section will
give information on the micro-architectural background for the power breakdown of
a modern CPU. It will further describe which power saving techniques are commonly

applied and where DVFS can be of use.
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2.2.1 CPU Power Dissipation

The power dissipation of a computer system’s central processing unit (CPU) can be
subdivided into three parts: dynamic power consumption (Fyy,), short circuit power
consumption (Py,,) and leakage power consumption (P.qx) [S) 14, [15]]. The follow-
ing power equations are often found in literature on integrated circuits using comple-
mentary metal-oxide-semiconductor (CMOS) technology. They describe these three

components. Total power is defined as:
P:den + Pshort + Pleak 2.1

Dynamic Dynamic power consumption occurs during capacitance charging and dis-

charging of CMOS logic circuits. It is defined as:
Py = ACVZf (2.2)

C is the total load capacitance, A is the average number of logic switches per

clock cycle, V is the supply voltage and f the frequency of the clock.

Short Circuit Short circuit power is expended when a short circuit current /g, flows

for a short time T during logic gate switches. It is defined as:

TAV Lipore (2.3)

Leakage Leakage power dissipates because a small leakage or subthreshold current
I1.qr flows through transistor layers even when CMOS transistors are turned off.

It is defined as:
Preak = Vieak (2.4)

Over the years multiple power saving strategies have been developed to make proces-
sors more energy efficient, specifically for embedded systems and server farms. These

strategies focus mostly on four areas:

DVFS DVES allows to dynamically vary operating frequency and supply voltage of

logic elements to reduce dynamic power dissipation.

Dynamic Power Management This technique is closely coupled with DVFES and en-

ables the CPU to enter different low-power states during idle time.



Chapter 2. Background 15

Thermal Management Here, the focus lies on the thermal aspects of the processor.
Thermal management aims to reduce heat dissipation to save power used by

cooling elements.

Heterogeneity Aware Scheduling This approach is considered when a processor com-
prises multiple cores of different complexity and thereby different power levels.
Intelligent task scheduling is able to save energy by running tasks with low com-
putational intensity or priority on small and energy efficient cores while tasks
with high computational intensity or priority are executed on high performance

ones.

In this thesis, a technique for mobile devices is developed to save energy by dynami-
cally adjusting the frequency and voltage level. Therefore, the following sections will

focus on functionality and background literature of DVFS techniques.

2.2.2 DVFS Approach
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Figure 2.1: The same task is executed on two different voltage and frequency levels.
The left side shows the task being executed on the maximum frequency. It finishes well
before its deadline. The right side shows the task’s execution with half that frequency.
Here, execution ends right at the deadline. Due to a quadratic relation between voltage
and dynamic core power, energy is significantly reduced (source [5]).

DVES is an energy management technique to dynamically reduce the supply voltage
of CMOS logic gates in a CPU to save energy. According to Equation [2.2] reducing
voltage leads to a quadratic reduction in power consumption. This means, even small
voltage reductions can bring significant energy savings. However, since reducing volt-
age also means increasing circuit delay, the processor logic cannot keep operating on
the same clock frequency. Therefore, reducing voltage also requires a reduction in

operating frequency which has an effect on system performance.
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The key idea behind DVES is shown in Figure 2.1 Here, DVFS is used based on
the observation that finishing a task early and then idling until its deadline, is less
energy efficient than finishing the task as close as possible to its deadline. On the left
side of the figure a task is executed with maximum core frequency and finishes well
before the deadline, indicated by the dashed line. On the right side the frequency is
reduced by half which reduces execution speed and allows lower voltage. Now, the
task hits the deadline precisely. Following this naive picture, the energy consumption
is quartered for the execution on the right side due to the quadratic relation between
dynamic power and voltage. Still, the corresponding task finishes in time, despite its

prolonged execution duration.

This demonstration of a DVFES application is highly simplified. The actual effect of
DVES on a system’s performance and energy consumption under its current task load
is usually not as easily determined. Many real-world complexities need to be con-
sidered [[15]. A big problem is the unpredictable nature of workloads. It is hard to
estimate which tasks will appear at any point in time and what their execution time
and characteristics will look like. Furthermore, real-world systems show a number of
non-determinism and anomalies in the relation between clock speed, task execution

time and energy consumption:

System Power The power dissipation of a microprocessor might be quadratic to its
supply voltage but that is usually not true for the power of the entire system. A
task might use an energy demanding component such as a cellular module. If
its execution speed is reduced, the CPU might use less energy, but keeping the
component active for longer might lead to a higher energy consumption of the

whole system.

Execution Speed There is a long debate between researchers whether it is actually
more energy efficient to finish a task close to its deadline, aka. pacing, or if
more energy can be saved by finishing the task as quickly as possible to enter a

deep sleep state early, aka. sprinting.

Context Switches Most modern systems do not run a single task on a single CPU
but rather constantly switch contexts on multiple cores between multiple tasks.
Changing execution speed can lead to rearrangements in future context switches

which are hard to predict.

These and other complexities have led to a large body of research work where scien-
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tists looked into various ways of optimising DVFES application for real-world systems.
Based on [3} |15} [16]], the following sections will give an overview of past research
work. Studies from areas closely related to the techniques applied in this thesis, such
as user perception or machine learning driven DVFES, will be discussed in more detail
in Chapter 3

2.2.3 DVFS Research

The earliest work on DVFS was done by Weiser et al. [[17] in 1994 and a year later
extended by Govil et al. [18]]. In this early work the authors conducted experiments
testing various scheduling techniques which would dynamically reduce operating fre-
quency and voltage to slow down tasks so they would hit their deadline more closely.
They reported 50-70% energy savings after evaluating their scheduling techniques us-

ing trace-driven simulation.

In a survey from 2005, Venkatachalam et al. [[15]] subdivided DVFES algorithms into

three major categories:

Interval In the interval based approach, the time a processor is busy is measured over
the timespan of a given interval. Based on observed statistics, future utilisation
and required frequency settings are determined. Examples for interval based
DVES can be found in [[17H20]. Most current standard DVFS implementations

for Linux based systems rely on the interval approach (see Section [2.6)).

Inter-Task The inter-task approach assigns processor speed settings on a task gran-
ularity as for example in [21, 22]. For each task a frequency setting is chosen
based on previous observations of this task’s execution characteristics. At each

context switch to the task, the CPU is fixed to the selected frequency.

Intra-Task The intra-task approach increases granularity by additionally considering
phase changes within single tasks. Researchers subdivided single tasks in sub-
regions based on program structure or measured execution characteristics. They
assigned DVFS levels to each identified region. Examples can be found in [23-
27]. Other policies to specify subregions [28-30] were implemented on a com-

piler level. They considered program execution paths or checkpointing.

Trying to exploit the deadline approach depicted earlier in Figure 2.1 many studies are

focusing on real-time systems. Here, task deadlines were usually known beforehand
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in the form of a worst case execution time (WCET) [31H37].

Many introduced DVFS algorithms make use of a workload’s micro-architectural char-
acteristics to estimate performance loss when reducing execution speed [38-46]. One
significant indicator for low performance losses is the memory-boundedness of a task.
If a task has long stall times while waiting for memory accesses, CPU frequency can
be reduced without significant impact on the task’s execution speed. In contrast stands
a task’s CPU-boundedness for which researchers showed a linear dependence between
processor frequency and execution time. A good balance needs to be found if a task
shows a combination of both characteristics. One of the major challenges in this area

is to detect at runtime whether a task is memory- or CPU-bound.

In contrast to a global application of DVFS where the clock speed of the entire proces-
sor is manipulated, methods were evaluated to set voltage and frequency on a more fine
grained level. The practice of fine grained DVFS application was first analysed with
the introduction of multiple clock domain processors in 2002 [47]]. Single components
of the processor such as floating point unit, integer unit, memory, etc. were driven
by their own clock and voltage supply, i.e. had their own voltage-frequency islands.
This architecture design made it possible that only components under heavy load were
running on higher frequencies using more energy. Many studies were conducted on re-
fining DVFS techniques for processors with multiple clock domains. This was initially
done for single core processors [48-53]] and later extended to machines with multiple
cores [20, [54-56].

In this thesis experiments are conducted for single core configurations to reduce sta-
tistical error due to load balancing. For the sake of a comprehensive picture, however,
DVES research background on multi-core systems will still be covered here briefly.
Multi-Core processors or chip multiprocessors (CMP) brought a new set of challenges
for energy efficient DVFS applications. Especially, when frequency levels can be set
separately for each core or groups of cores. By simultaneously setting different cores to
different frequencies, heterogeneity is artificially introduced into the system. Further
heterogeneity among actually homogeneous cores comes due to chip manufacturing
variations. Now not only energy efficient DVFES settings, but also good thread to core
mappings need to be found. DVFS research on implicit heterogeneity and power effi-

cient thread to core mapping was done by [57-61].

With CMP systems also came the problem of shared resource contention. Multiple
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cores of a single processor often share resources such as last level cache, prefetching
hardware, memory bus, etc. Competing for shared resources can lead to significant
slow downs of stalling tasks. In that context, researchers analysed how resource con-
tention can be reduced and energy efficient scheduling and DVFS applied at the same
time [62H65]].

As mentioned in Section[2.2.2] DVFS can only be used to reduce dynamic power con-
sumption. With shrinking feature size of modern processors their static component, i.e.
leakage power dissipation, grows. Observing this trend as well as how the improve-
ment of processor’s deep sleep modes, researchers argue that potential energy savings

of DVFES will hit a limit or even diminish in the future [66-69].

2.2.4 Summary

DVES is a technique to reduce the power dissipation of dynamic core power. This is
done by carefully adjusting supply voltage and clock frequency depending on execu-
tion demands of the current workload. The goal of this technique is to reduce energy
consumption without major performance impact. Researchers analysed various ap-
proaches, changing frequency settings on interval, task or program phase granularity.
To find the right performance level, task characteristics were being observed using
offline profiling or online sampling methods. The multi-core era brought additional
complexity by adding the dimension of finding good DVFS settings for multiple cores
and multiple active program threads at the same time. With shrinking feature size of
modern processors researchers predict a limit to DVFES energy savings due to growing

leakage power.

The DVEFS technique presented in this thesis makes frequency decisions on a work-
load execution phase granularity. Execution phases are indicated by system response
intervals to user input as seen by the user. The presented approach finds the correct
frequency level by using a reinforcement learning mechanic to evaluate observations
of multiple response time samples. Related user perception based DVFS techniques

driven by machine learning are discussed in Section
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2.3 System Response Time Effects on QOE

The DVES approach taken in this thesis relies on information about when performance
changes are actually perceptible by the end user and when they are not. Human com-
puter interaction (HCI) research identified the time it takes the system to respond to
user input as of significant importance to maintain high QOE. Therefore, the effect
of frequency changes on system response time (SRT) as seen from the user’s point of
view are considered in this thesis to drive DVFS optimisations. The following section

will give an overview on SRT research background to provide a context.

2.3.1 System Response Time Concept

User
initiates Computer
activity responds

| | |
K Responsetime M( Userthinktime M

Figure 2.2: Simple model of user interaction, system response and user observation of
presented results [[12]].

User interactions with computer systems usually follow a specific pattern. This pattern
is depicted in Figure [2.2] in the form of a simple model developed by Shneiderman
in 1984 [12]. First, the user initiates an action by providing some kind of input to
the system, e.g. key press, mouse move, voice command, etc. The computer system
processes the input and responds to the given command. Depending on the initiated
action the user might have to wait some time until results are being presented. As soon
as the system starts displaying a response the user can observe it and start thinking
about what to do next. He might then decide to initiate another action and the cycle

starts all over.

The amount of time between initiated action by the user until the system finishes dis-
playing results on the screen or printer is called system response time (SRT). In some
research work SRT only refers to the time until the system shows a first input acknowl-
edgement even though it did not yet finish displaying the entire response. In Figure

the time period following a response is labelled user-think-time and indicates the times-
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pan where the user thinks about what to do next. In reality user-think-time might look
more complex. Users are often planning ahead several steps while initiating an ac-
tion, they might not care about the output or cancel it altogether. In [12] Shneiderman

describes a more realistic model of user-think-time and discusses it in detail.

SRT is at the centre of research work since the 1960s. Scientists are evaluating various
parameters to determine which response duration in what context leads to optimal QOE
for the user. In the earliest known work on SRT, Miller [70] hypothesised that user
interactions with a system can be seen as a conversation between two persons. As long
as certain limits in response time are not violated and no inconvenient pauses occur
the conversation keeps flowing. He identified 17 system interaction categories with
different response time requirements. Those requirements are to be met if the user’s

work flow should not be disturbed.

2.3.2 Research Work on Different SRT Aspects

Later studies evaluated and extended Miller’s early guidelines. In 2011 Dabrowski [10]
presents a detailed review of SRT research over the course of the last 40 years. The

following paragraph will give a short summary of its most important aspects:

Errors Several studies [6, [/1-81]] describe experiments to determine if varying SRT
has an effect on the mistakes a user makes while working with a computer sys-
tem. Mistakes such as entering wrong data or clicking a wrong user interface
(UI) element. It turns out that even a small SRT delay on an atomic level, like
during key presses or mouse movements, leads to immediate mistakes by users.
If the system is not able to follow a user navigation, error rate goes up. If long
delays happen only between tasks where delays are to be expected, less mistakes

were being observed.

Productivity The completion rate of tasks or amount of work done over a period of
time was analysed while modifying SRT. Many authors [6, [71-73} [75H77, 79,
80, [82-90] reported that in general, productivity decreases if SRT increases.
Specifically, when the SRT affects interactions on an atomic level, i.e. for mouse

movements or text input.

User Adjustment Researchers [71, (72, (74, 76, 78, 81, [85-87, |89, 91-93]] analysed
the ability of users to adjust their behaviour to changing SRT. The results show
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that user-think-time (see Figure [2.2)), aka. user-response-time, increased with
increasing SRT. But also the type of commands users issued changed with longer
SRT. In that context, scientists described SRT as a measure of task execution
costs. The longer the SRT, the more time the user would spend on thinking
about what to do next before investing a high cost again. He would also change
the type of commands being issued. If the delays were shorter, users would often
issue simple commands in a trial-and-error type of way. For longer delays they
would use more complex commands to get more work done within a single SRT

cycle.

Psychologial Effects Researchers [72, (73} [80, 86-88, 90, 94-103]] looked into the
connection between SRT and several psychological effects such as user irritation,
boredom or the perceived quality of the system. Same as for productivity and
error rate, user irritation increases and perceived quality decreases with growing
SRT. Some of the negative effect can be mitigated by presenting the user with
continuous feedback like animations or loading bars while the system is busy

working on the response.

Physiological Effects Finally, a few studies [6, 80, |104-106] were conducted on the
effects of SRT on physiological factors such as stress and anxiety. Scientists
measured heart rate or blood pressure while varying inter task delay. The ob-
served results showed that too long delays lead to heightened anxiety in users
as well as too short ones. Following that, researchers argued that an optimum
level of SRT can be found which gives the user an appropriate amount of time to
prepare for the next task and allows him to finish it with low error rate and low

anxiety.

The general conclusion which can be drawn from this body of work is that increasing
SRT in most cases has a negative effect on the user. His irritation and stress level grows
and he tends to make more mistakes, especially when delays happen on an atomic level.
If long response times occur between tasks users are able to adapt up to a certain point.
They tend to think longer about what to do next and issue more complex commands to

make sure the time during the next delay is well spent.
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2.3.3 SRT Taxonomies

Based on research findings over the years, scientists refined Miller’s guidelines from
1968 and developed taxonomies of their own to specify good SRT boundaries de-
pending on the context. The taxonomy being around the longest was introduced by
Shneiderman in 1987 [12] (see Table [2.1a)). It suggests four different levels of SRT
depending on the complexity of the executed task. Atomic tasks such as typing or
moving the mouse should have very short delays of 50 - 150 ms while more complex

tasks were allowed up to 12 second delays before negative effects for the user would

pick up.
Task SRT Expectation | SRT
Typing, mouse movement | 50 - 150 ms Instantaneous | 100 - 200 ms
Simple frequent tasks Is Immediate 05-1s
Common tasks 2-4s Continuous 2-5s
Complex tasks 8-12s Captive 7-10s
(a) Shneiderman’s Categorisation (b) Seow’s Categorisation

Table 2.1: Response time taxonomies after Shneiderman and Seow.

Another attempt to create an SRT categorisation was made by Seow in 2008 [13]] and
later confirmed by Anderson et al. [107]]. Instead of considering task complexity, Seow
categorised SRT levels by user expectations (see Table[2.1b). The first category, Instan-
taneous, refers to atomic events and allows with up to 200 ms slightly longer delays
than Shneiderman’s atomic event threshold. The Immediate category specifies optimal
delays for interactions which require immediate acknowledgement by the system for
some action executed by the user. The system might not be finished processing the
initiated action yet but the delay between input and the first feedback should not be
longer than 1 second. The third SRT boundary specifies a maximum delay in order to
maintain a Continuous flow of user interactions, like in a conversation. Lastly, tasks
started by the user where he simply has to wait for them to finish are covered with
the last category, Captive. Here, Seow suggests some kind of feedback within 7 to 10

seconds if the user is to be kept engaged with the system and not abandon the task.

In 2015, Doherty and Sorenson [[108]] presented a third categorisation of SRT which
combines both Shneiderman’s and Seow’s taxonomies. It adds the additional aspect
of users’ perceptional limits, such as attention span. Further approaches to quantify
SRT were taken by Tolia et al. [[109] who categorised how users of thin clients experi-

enced response times due to network latency. More recently Verheij [110] introduced
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quantification metrics for response time in a white paper in 2011. He considers task

complexity and SRT variation in a desktop environment.

The presented research leads to the assumption that it is unlikely to find a universal SRT
model or metric. Rather constant adaptations of traditional approaches are required for

each new generation of computer systems and for different applications.

2.3.4 Perceived Performance

Once an acceptable SRT taxonomy is found for the problem at hand, the next step is
to implement a way of applying it at runtime. Past research indicates that simply im-
proving the performance of system components might not be enough to satisfy SRT
thresholds and thereby the user. Tim Mangan was the first to introduce the term per-
ceived performance in a white paper published in 2003 [[111]]. He refers to this term
when analysing the system while applying performance improvements which the user
can actually feel. These are standing in contrast to improvements which might increase

the compute capacity of the system but are not noticeable by the user.

For a long time interface designers built their systems in a way that the first form of
feedback following user inputs came no later than 100ms. In 2001 Dabrowski et al. [11]]
questioned this boundary and conducted experiments to test it. They found that in their

experiments users did not notice delays of 150 to 200ms.

Making use of Weber’s Law [112], Seow [13]] suggested in 2008 a 20%-rule when
introducing performance differences which are meant to be noticed by the user. Ac-
cording to Seow, if a task increases or decreases its delay by less than this cut-off, the

user will most likely not notice a difference.

2.3.5 Summary

The general trend for SRT goes towards shorter delays rather than longer ones. This
trend reflects in developed taxonomies. Even though researchers introduced a variety
of different models and metrics over the years, most interactions require a delay of a
few hundred milliseconds up to a couple of seconds. Despite that, future systems often
bring new ways of interacting with them. When 40 years ago most interactions were

executed by pressing the RETURN key after entering a command [|113]], there are now
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touch screen input, voice control or gyroscope movements. For each new context it
is likely that the presented SRT taxonomies need to be adapted. More importantly,
developers need to find new ways of implementing their software to keep interaction

response times within suggested deadlines.

In Chapter {f] a methodology is developed to benchmark interactive mobile workloads
considering SRT as seen from the user’s point of view. Taxonomies and guidelines
on perceived performance presented in HCI research are used in Chapter [5|to create a
metric which helps to quantify QOE for said workloads. Closely related research on

measuring SRT durations for mobile workloads will be presented in Section [3.2.3]

2.4 Reinforcement Learning

Chapter|/|uses a reinforcement learning (RL) driven technique to find good frequency
levels for SRT instances. This approach allows the developed DVFS algorithm to adapt
its frequency decisions to varying workloads. The following section will describe the

general concept of RL and the specific approach applied in this thesis.

Reinforcement Learning is defined by characterising a specific learning problem. A
learning agent learns which actions to take in a given situation to achieve a goal. This
is not done by providing example training data, as for supervised learning. Rather,
the agent has to learn optimal behaviour itself using a trial-and-error approach. Sutton
and Barto [114] consider every algorithm that is able to solve a problem of given
characteristic as an RL algorithm. The following description of RL is mostly according

to their text book on the topic.

:[ Agent} S

State

( "
Rewa“’\ Environment }—

Figure 2.3: Interconnections between an RL agent and its environment. Each action ex-
ecuted by the agent affects the environment’s state. Information on the current state and
a reward value are processed by the agent to learn correct behaviour. (source [[114]).
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In RL systems an agent learns correct behaviour by interacting with its environment.
Each action executed by the agent affects the environment and leads to a stafe transi-
tion. Information on the new state are passed to the agent as well as a reward value re-
sulting from the last action. The reward indicates how well the executed action helped
to achieve the desired goal. The agent evaluates the reward and adapts its behaviour
if necessary. Depending on the environment’s new state it decides which action to

execute next. The interconnections between agent and environment are displayed in
Figure[2.3]

Examples for RL can be found in many fields: On a very high level, RL is used in na-
ture when a baby bird learns how to move its wings for flying or when humans practise
hand-eye-coordination to pour milk in their cereals in the morning. A more technical
problem needs to be solved for a building’s heating system. An RL algorithm can use
sensor data such as outside and inside temperature, weather forecast and room occu-
pancy to learn correct regulations of radiator valves. RL is also successfully applied in
robotics. There it is used to teach a robotic arm and hand how to grasp objects. It does
so by learning the correct power levels of electric motors to move corresponding joints.
It was also used by scientists for teaching robots how to play football [115]. To test
out RL capabilities, scientists applied this technique to learn the rules of play for board
or video games such as Backgammon, Go or Space Invaders. There, the implemented

algorithms try to beat a human player or improve overall highscores [[116,|117]].

Next to agent and environment there are four additional main elements in an RL sys-

tem:

Policy The agent’s policy describes which actions are to be taken depending on a given

state. This policy changes over time while the agent improves its behaviour.

Reward Function The reward function specifies the desired goal of the system. It
maps pairs of executed actions and resulting states to a single number. This
number represents how well the system was moving towards the desired goal
with its last action. It reinforces the application of good behaviour. The agent’s

ultimate goal is to maximise the reward for each executed action.

Value Function While the reward function indicates good behaviour for the last ex-
ecuted action, the value function indicates good behaviour in the long run. It
considers potential future states following the current one and is used for plan-

ning future actions over more than a single step forward. A greedy policy would
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always select the action leading to an immediate optimal reward. This can lead
to a local reward maximum but not necessarily to a global one. The value func-
tion allows to improve upon this behaviour by estimating multiple future steps
where suboptimal actions in the immediate sense lead to higher rewards in the

long run.

Environment Model In some learning systems a model of the executed environment
is used for planning future actions. It mimics the environments behaviour for

executed actions and is able to predict future states.

A major challenge for RL systems is to find a good balance between exploration and
exploitation. The agent always faces the decision between executing an action which
leads to optimal rewards according to its current estimations and executing an action to
further improve its knowledge of the environment and thereby its policy. It is possible
that the environment is stationary which would allow the agent to find a global opti-
mum. If the environment changes its behaviour over time it is considered not stationary

and constant improvement of the agent’s policy is necessary.

This challenge is exactly what a DVFS technique faces that aims to reduce energy
consumption while keeping QOE high. Both need to be balanced against each other.
It is tackled by the work presented in Chapter [7]

2.4.1 Multi-Armed Bandit Problems

Optimising DVFS energy efficiency for independent user interactions falls into a spe-
cialised category of RL problems. If the agent needs to make a decision about which
action to take next in only a single reoccurring situation, the original RL problem is
simplified. In this setting distinct decision making situations are independent from
each other. That means, assuming the policy is not changed, decisions taken in the
past do not affect the decisions taken by the agent in the future. This is true for finding
an energy efficient CPU frequency for a system response to user input. The chosen
frequency for one interaction would not affect the frequency choice for the next if no
policy changes occur. One could construct a case where an interaction takes so long
due to a low frequency that it would interfere with the user’s plan of issuing the next
input. This case is, however, not considered for the workloads in this study. This RL

problem subclass is called Multi-Armed Bandit Problem.
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In this problem setting a regular choice of a fixed number of options or actions is
presented to the agent. The agent selects a single action and receives a numerical
reward taken from a corresponding probability distribution. Its goal is to maximise the
total reward over time by learning which actions are best. The name bandit is according
to the colloquial term “one-armed bandit” used for slot machines in casinos. Its theory
is often described with the analogy of a single slot machine with multiple levers. For
each play of the machine a single lever can be pulled and the reward is the amount of
money won by hitting the jackpot. Each lever has a different payout rate and the goal

is to maximise earnings by learning which levers work best.

The agent’s decision policy is adapted by learning the probability distribution behind
each selectable action. By maintaining an estimate of observed action values the agent
can decide which action is best. Like a full RL problem, it faces the decision of whether
to exploit current knowledge of observed rewards or explore if other actions might lead
to higher rewards. If the probability distribution of single actions changes over time it

is considered non-stationary and constant learning is required.

2.4.2 Summary

Reinforcement Learning describes a problem setting where an agent tries to learn
which actions to take to achieve a goal. Actions are taken based on the state of the
system’s environment. A resulting numerical reward is evaluated and used to learn
how well the executed action for the given state leads toward the desired goal of max-
imising the total future reward. A problem subclass of RL is the Muli-Armed Bandit
Problem where actions are independent of each other and the agent only makes deci-
sions for a single kind of situation. A major challenge exists in finding a good balance
between exploring which actions work best and exploiting the knowledge learned so

far to gain optimal rewards.

Optimising DVFES energy efficiency for distinct user interactions in a mobile work-
load can be classified as a non-stationary contextual bandit problem. The agent needs
to find optimal frequency settings from a fixed number of available core frequencies
for reoccurring and independent user interactions. Frequency dependent system per-
formance or energy consumption of a distinct interaction can change over time (see
Chapter [/| for details). Hence, the developed DVFES agent must constantly adapt its

learned behaviour. Publications on RL driven DVES techniques related to mechanisms
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developed in this thesis are presented in Section [3.3.2]

2.5 Android Open Source Project

The Android operating system developed by Google is currently the mobile OS with
the highest market share worldwide. According to Gartner []1] it held a share of 86.2%
of all smartphone sales worldwide in the second quarter of 2016. Android’s sources
are available to the public via the Android Open Source Project (AOSP) [118]. It
allows developers to get an insight in Android functionality and modify, build and
deploy the source for their own purposes. Due to its accessibility and broad application
world wide it is a great platform for mobile research and will therefore be used for

experiments conducted in this thesis.

All experiments and modifications are based on Android Jelly Bean version 4.2.2 with
underlying Linux kernel 3.4.0. In Chapter|[6]a heuristic is developed to detect the end-
ing of a system response as perceived by the mobile device user. It relies on a statistic
which indicates when the screen content changes. This statistic is recorded by observ-
ing the Android framework component SurfaceFlinger. SurfaceFlinger is responsible
for combining all visible surfaces of all running applications to a final frame buffer im-
age which is eventually displayed on the screen. To provide background information,

it will be described in more detail in the next section.

2.5.1 Android Graphics

The Android framework offers two ways for application developers to render images
to the screen: With Canvas2D or OpenGLES. Canvas2D is a 2D graphics API which
is most commonly used by developers to render their applications. Canvas2D opera-
tions are translated into OpenGL operations which allows hardware acceleration using
a GPU. Application developers also have the option of using OpenGL commands di-
rectly with the OpenGLES interface.

Both methods render images to a graphic buffer called a “surface”. Surfaces are pro-
vided by buffer queues which are at the centre of Android’s producer and consumer

based graphic pipeline. A buffer queue relays surfaces between image stream produc-
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Figure 2.4: Android SurfaceFlinger component combines drawable surfaces of active
applications to the final frame buffer image presented on the screen.

ers such as OpenGLES or Canvas2D, and image stream consumers such as Surface-

F. lingerﬂ for final rendering.

The graphic pipeline is depicted in Figure[2.4] On its left side multiple applications are
displayed with one or multiple surfaces to be rendered to the screen. Initially, the Win-
dow Manager component connects to SurfaceFlinger using a buffer queue and requests
a surface to draw on. All generated image content is then produced and consumed us-
ing this connection. The Window Manager also provides meta information on how
surfaces are to be positioned. SurfaceFlinger receives all surfaces to be rendered and
uses OpenGLES and the Hardware Composer to create the final image to be displayed
on the screen. The Hardware Composer is a hardware abstraction layer for the dis-
play hardware. Its implementation is provided by the device vendor. It decides which
way is best to compose images for the given hardware and passes those information to

SurfaceFlinger.

As soon as an application has finished drawing desired content to a surface, it sends
a signal to indicate that buffer production is finished. The buffer is enqueued into the
buffer queue connecting the application with SurfaceFlinger. SurfaceFlinger is no-

tified about new content, acquires it and composites all current surfaces to the final

"Even though SurfaceFlinger is consuming most surfaces, other consumers exist as well. One ex-
ample is the camera application which consumes a camera image preview stream and displays it.
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screen image. Android makes sure that drawing, surface composition and presenting
final frames are synchronised with display device frame boundaries to deliver a con-

sistent frame rate.

For the heuristic developed in Chapter [6] SurfaceFlinger was instrumented to relay
information on its current activity to a message trace. Every time SurfaceFlinger is
notified about new content and starts composition, a trace message is written to a mes-
sage stream. This message stream is evaluated by the heuristic to get information about

screen changes.

2.5.2 Summary

AOSP is a project providing developers with access to the Android operating system
sources. It allows developers and scientists to analyse and modify the OS. AOSP in-
cludes Android’s graphics framework which application developers use to render their
applications. No application can render directly to the screen. Instead they render to
graphic buffers which are passed on to SurfaceFlinger. This component then com-
posites all visible buffers and creates the final image. SurfaceFlinger sleeps until it
is notified about new content to be rendered. This notification is trapped and used as

indicator for screen changes in Chapter|[6]

2.6 CPU Frequency Governors

In this thesis a CPU frequency scaling technique is developed for the Linux based An-
droid OS. It is evaluated against the current standard on this mobile platform. Hence,

this section will provide background information on current mobile DVFES techniques.

CPU frequency scaling is implemented in the Linux kernel. The corresponding in-
frastructure is called cpufreq. Frequency scaling parameters can be exposed to user
space for configuration with the /sys file system interface. They are located at /sys/de-
vices/system/cpu/. Like other kernel functionality, algorithm implementations are pro-
vided in kernel modules which can be loaded and unloaded as required. In Linux,
frequency scaling algorithms are called CPU frequency governors. Multiple governor
modules are provided by default. The most common ones on mobile devices are listed

here:
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Powersaver This governor fixes the CPU to the lowest available frequency.
Performance This governor fixes the CPU to the highest available frequency.

Userspace This governor does not implement any frequency scaling policy itself. It
serves as a shell for scaling algorithms written in user space. Such programs can

use exposed cpufreq parameters to monitor and set frequency levels manually.

Ondemand This governor is usually activated by default on device startup. It scales
frequency with CPU load. When the load goes up, it jumps to the highest fre-

quency and ramps down when the load declines. Its original algorithm [119] is
shown in Figure

for every CPU in the system
every X milliseconds
get utilisation since last check
if (utilisation > UP_THRESHOLD)
increase frequency to MAX

every Y milliseconds

get utilisation since last check

if (utilisation < DOWN_THRESHOLD)
decrease frequency by 20%

Figure 2.5: Original algorithm of Ondemand governor.

The sample rates X and Y are functions of the transition latency needed by the
underlying hardware to switch between frequencies. UP_THRESHOLD and
DOWN_THRESHOLD specify two percentage values of CPU utilisation and in-
dicate were the governor takes action. MAX refers to the maximum available
frequency. Most governor parameters such as thresholds can be configured via

the /sys file system interface.

Conservative This governor works the same way as Ondemand with the difference
that it does not jump to the highest frequency upon detecting increased load.
Instead it takes intermediate steps and gradually increases the frequency. This
approach is designed with the goal of being more energy efficient. However, it

also reduces system responsiveness due to the slower frequency increase.

Interactive This governor also scales frequency with CPU load. In contrast to Onde-

mand, however, it is designed to be more responsive by scaling the frequency up
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faster and keeping it high for longer [[120]. When the user starts interacting with
the device, Ondemand would monitor CPU load for several milliseconds before
raising the frequency. Inferactive is designed to detect CPU context switches
out of idle and applies only a short utilisation sampling of under 10 ms. This
way, frequency is raised much quicker after the CPU came out of idle and the
system responds faster. This approach, however, causes the CPU to spend more
time in higher frequencies than with Ondemand which can lead to higher energy

consumption.

2.6.1 Summary

DVES strategies developed in this thesis are directly compared against Ondemand,
Interactive and Conservative and indirectly against Powersaver and Performance. The
last two are considered for experiments by using Userspace to fix the CPU to the

highest and lowest available frequency manually.
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Related Work

3.1 Introduction

This chapter will discuss research work closely related to the concepts and techniques
developed in this thesis. The first section will present research on automating and
benchmarking interactive mobile workloads with a specific focus on the evaluation
of SRT durations. The second section will look at DVFS research driven by user

perception and machine learning methods.

3.2 Interactive Mobile Workloads

In Chapter ] a methodology is developed to automatically replay interactive mobile
workloads on Android systems. Input is recorded automatically from actual users con-
sidering realistic workload scenarios. Recorded inputs can be replayed an arbitrary
number of times. Furthermore, replays are benchmarked measuring SRT durations for
each interaction to quantify QOE. This section will at first present workload automa-
tion tools for the Android OS developed in different studies. Secondly, publications on
interactive mobile benchmarking are discussed and lastly research work is reviewed

which considers analysis and optimisation of SRT on mobile devices.

34
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Table 3.1: User input automation tools for mobile workloads.

Tool Test Generation Comment

Google Monkey Automatic Replaying random user input.

MonkeyRunner Manual Test cases are scripted.

Robotium Manual Test cases are scripted.

Guitar Manual Point and click interface to create test
cases. No gestures supported.

Gui Crawler Automatic Java GUI element crawler. No actual
input replay.

Reran Automatic Linux subsystem input record and re-
play.

Mosaic Automatic Extension of Reran to support multiple
devices.

Valera Automatic Extension of Mosaic to include input,
sensor and networking data for record
and replay.

3.2.1 Interactive Mobile Workload Automation

Replaying user inputs is a commonly used technique for testing systems to find pro-
gram errors. Usually, a test case composed of multiple interactions is written by hand
and then executed automatically as often as required. In the early years of the 21st cen-
tury, a trend emerged to automate test case generation for applications with graphical
user interfaces (GUI). According to Memon et al. [121] GUI instrumentation tech-
niques were developed to record user interactions. This led to test cases that were
more realistic than manually crafted ones. Multiple frameworks were developed to
record and replay user interactions in desktop or server environments. One example
is Xnee [122]], an automation tool for Linux. It records user input and related X177/
events. Another one is the Java GUI test framework Abbot [[123]]. It can record user

interactions for Java applications.

With the arrival of modern smartphones automatic generation and replaying of user in-
teractions was needed on these new platforms too. A summary of tools developed for
that purpose can be found in Table 3.1} Google provides test frameworks for the An-
droid OS that are called Google Monkey [124] and MonkeyRunner [|125]. Google Mon-
key is a straight forward stress tester which generates random user input. The more
sophisticated MonkeyRunner allows developers to manually generate test cases and
run them automatically. The third party Android GUI testing tool Robotium [125]] also

allows the manual composition of test scripts and automatic replay. It is, however, tied
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to distinct applications and cannot replay arbitrary workloads. Guitar [[126] extends
Android SDK’s MonkeyRunner tool to allow developers to create their own test cases
with a point-and-click interface. However, Guitar does not support complex touch-
screen gestures, e.g. swipe and zoom, or other input devices, e.g. accelerometer and
compass. A tool developed by Amalfitano et al. [127] extends Robotium to generated
GUI tests cases automatically by crawling the GUI source code and generating Java

output. It is, however, not able to capture actual user input.

Probably the most sophisticated Android interaction record and replaying tool was de-
veloped by the University of California. Their initial version called Reran [[128] is able
to record and replay user inputs by directly accessing Android’s underlying Linux sub-
system. The same approach is taken for the work done in this thesis (see Section4.3.2)).
Reran was later extended to Mosaic [[129] which allows device independent replay of
user interactions to enable portability between Android devices. The most recent ver-
sion Valera [130] enriches user input events with sensor readings such as GPS, camera
and microphone, as well as networking transmissions. In so doing, Valera removes
most sources of non-determinism and allows capturing and replaying of realistic An-

droid workloads.

All tools presented here allow the generation and automatic execution of test cases
for Android applications. Most of them require a manual or semi-manual approach
to create test cases. Only Reran and its predecessors are able to accurately capture
and replay actual user interactions. All of the studies presented above, however, only
provide a workload automation tool. They do not use it to compose a representative
benchmark to share with the research community. Also, they do not use generated
workloads to evaluate and improve system behaviour, in particular interaction response

times as seen from a user’s point of view.

3.2.2 Interactive Mobile Benchmarking

Recording and replaying of user interactions gives developers a possibility to generate
representative workloads to test and evaluate their design choices and runtime heuris-
tics. However, to make research results comparable to other studies, those test cases
need to be shared in the form of a benchmark suite. Publications presenting mobile
benchmark suites exist, however, current research typically still relies on benchmarks

built from mobile applications with little to no interactivity and predefined user inputs.
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Gutierrez et al. [[131] compare mobile workloads to traditional Spec benchmarks w.r.t.
their micro-architectural behavior. It uses BBench, an automated browser benchmark,
to open downloaded web pages, scroll to the bottom of the page and measure perfor-
mance. This sequence of actions does not require any user interaction. Additionally,
three further applications (game, music player, video playback) are evaluated, how-
ever, these appear to introduce inaccuracies between test runs as their execution is not

automated, but are manually launched.

Huang et al. [132] present a benchmark suite comprising popular applications for the
mobile Android OS, which are executed on the Gem5 simulator. These benchmarks

avoid user interaction altogether and run with predefined input sets.

Pandiyan et al. [133]] also present a mobile benchmark suite comprising video play-
back, image rendering and internet browsing applications. As before, these bench-
marks avoid user interaction and operate on predefined user inputs. Thus, this frame-
work does not support record and replay of interactions and no user perception is eval-

uated.

Kim et al. [134] introduce a mobile benchmark suite called LatencyBench which con-
siders user perceived latencies. They use it to analyse dynamic power management
schemes commonly used on modern mobile devices such as the Ondemand, Inter-
active or Conservative governors. Their analysis context focuses on multiple cores.
Presented findings show that CPU load information are not sufficient to drive energy
efficient power management in an interactive context. Background tasks could take up
a lot of CPU time while the user does not notice them. These results are on par with
the governor evaluation in Chapter[5| The interactivity in their benchmark, however, is
limited to application startups of a browser application and they do not exploit reported

findings to implement improved strategies.

Sunwoo et al. [135] study several existing smartphone benchmarks and applications
including AndEBench, CaffeineMark, Rl Benchmark, Angry Birds, and KingsoftOffice
with the aim to measure the performance of the Dalvik virtual machine, SQLite and
the OS. They use the Gem5 simulator and an autoGUI system, which captures user
input and subsequently synchronises service of input by evaluating the frame buffer.
However, like the other methodologies, this approach targets traditional performance
metrics like throughput and delay, which do not necessarily translate into an improved
QOE for the user.
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3.2.3 Analysing SRT in Mobile Workloads

An abundance of tools and studies exist about capturing and analysing usage behaviour
of mobile device users and execution statistics of mobile workloads. Some researchers
present automatic logging tools [136-151]] which run in the background during user’s
daily routines, others run experiments in a lab environment [8, 9, 152H162]] to generate
application profiles. Depending on the particular research goal, some studies collect
comprehensive traces [136, 140142, 144, 145, [1475151}, 154, |156, |159] of execution
statistics and usage behaviour. Among them are application usage, network statistics,
micro-architectural features or location statistics. Others focus only on specific param-
eters such as energy profiles [157, 158, [160], battery charging behaviour [143]], touch
behaviour [[146], wake lock bugs [161, 162]] or networking profiles [155]. Among
those studies, some consider system response time characteristics of interactive user
input with the goal of improving the user’s experience [8} 9, |137-139, 152, |153].
Those studies are most closely related to the work presented in this thesis and will be

discussed in more detail.

Song et al. [137] optimise SRT for Android application startups to improve the end
user experience. They propose a usage pattern-based prefetching scheme for mobile
devices to improve application startup time. They state that long application startup
times negatively affect the user perceived performance of their phones. Frequent page
faults and resulting delay due to slow file 1O are identified as the reason for the long
application startup. By preloading a user’s most frequently used applications, the au-
thors aim to reduce application load times. The focus of this study lies on performance

rather than energy efficiency. Also SRT is only considered for application starts.

Applnsight [139] is used to monitor SRT characteristics of Windows Mobile applica-
tions in the wild. The author’s use dynamic binary instrumentation of applications to
detect user transactions. A user transaction begins when the user interacts with the Ul
and ends with the termination of all synchronous and asynchronous tasks triggered by
the interaction. The authors identify a critical path in a user transaction as the series
of task executions starting at the user interaction and ending with a corresponding UI
update. They argue that the length of the critical path directly affects the corresponding
SRT as perceived by the user. The reports generated by Applnsight are sent to appli-
cation developers to help them improve performance bottlenecks. This study presents

a diagnosis tool and leaves evaluation and improvements of analysed applications to
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developers.

PanAppticon [|138] is also a diagnosis tool monitoring the critical path between user in-
teraction and corresponding Ul update in the field. In contrast to AppInsight, however,
this tool works on Android workloads and tracks user transactions across interprocess
boundaries as well as into the kernel by considering system calls. This is done by in-
strumenting both the Dalvik virtual machine executing application code and Android’s
underlying Linux kernel. This study also presents an SRT diagnosis tool and offers no

actual improvements.

QoEDoctor [9] uses Android’s InstrumentationTestCase API to generate automated
UI test cases for commercial Android applications such as Facebook. They use those
test cases to analyse user perceived SRT for specific user interactions. By monitoring
the application’s Ul layout tree they aim to capture the exact user perceived start and
ending of an interaction lag. Layout tree evaluation, however, is not generic but needs
to be implemented separately for each interaction to be analysed. Their evaluation

focuses on networking parameters rather than processor performance settings.

Timecard [153] presents an API for server-based interactive mobile applications. It
allows the developers to track the SRT for user interactions triggering server requests.

Like QoEDoctor, it focuses on Ul interactions leading to server communication.

3.3 DVFS

In this thesis a DVFS algorithm is developed which bases frequency decisions on how
they affect SRT periods as perceived by the end user. A machine learning technique
trains a model to predict frequency selections for lower energy consumption and high
QOE. The target platform in this thesis is an Android mobile device. Developed tech-
niques are evaluated using an automated interactive benchmark which quantifies QOE
by considering the user’s point of view. The following section will present research re-

lated to DVFS techniques driven by user perception and machine learning approaches.

3.3.1 Perception Driven DVFS

Lorch et al. [|163]] analyse traces of Ul events to derive a heuristic to determine when a

UI task completes, which is subsequently used to influence DVFS decisions based on
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abstract user satisfaction thresholds. The heuristic determining the ending of a UI task
by tracking the termination of threads triggered by the interaction. This ending does
not necessarily correlate with what the user actually sees as screen output and therefore

cares about. The focus of this work is on desktop systems.

One of the earliest works on using user perception driven DVES for mobile devices
was done in 2004 by Zhong et al. [164]]. They present a dynamic power manage-
ment and voltage scaling heuristic which considers the interaction delays in interactive
workloads on PDAs. Interaction delay is measured by instrumenting event handlers in
benchmark applications’ source code used for this study. Their approach requires full
knowledge of the underlying sources. As before, the interaction delay ending based on
event handler observations does not correlate necessarily with the visible ending the

user actually cares about.

Yan et al. [165]] aim to improve DVFS based on user perceived latencies in system
response time for interactive workloads. They monitor events in the Linux X11 win-
dow system to measure latency and to control the frequency governor. The end of
a system response as perceived by the user is determined by tracking the communi-
cation between X// window client and server. The client responds to user input by
requesting a graphics update from the X7/ server. The server sends a corresponding
update to the monitor and responds to the client. The time between input and the ar-
rival of this response is considered as user perceived response time latency. Still, it is
unclear whether the first reported UI update is the one the user actually cares about or
if multiple updates are triggered. Additionally, the focus of this work is on desktop

systems.

Shye et al. [[7] use artificial neural networks to estimate individual user satisfaction lev-
els from the hardware performance counters. They employ explicit user feedback for
training a user-aware DVFES algorithm. The focus of this paper is on DVFS for desk-
top systems, which do not operate under power/energy constraints and typically run
different workloads (in this study, e.g. video playback, Shockwave animation, Java).
User feedback is through questionnaires, which are neither automated nor scalable.

Workloads cannot be replayed using a different system configuration.

An extended system using biometric input from the user to control DVFES is presented
in Shye et al. [[166]. Experiments are conducted with real users to investigate how dif-

ferent frequency levels in different scenarios affect biometric input. Again, workloads
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are not replayable and mainly involve desktop applications.

Same as in this thesis, Mallik et al. [167]] use an approach to evaluate user satisfaction
based on visual output. They measure the rate of pixel intensity changed over time and
use this metric to control the frequency governor. Similar to other studies, they use
questionnaires, focus on DVFS for desktop platforms and do not make provisions for

replaying workloads with modified settings to evaluate success.

Shye et al. [[140] create a logging application that collects usage data in the background.
Using a linear regression model, power consumption is predicted for interactive work-
loads. Their results suggest that the CPU together with the screen dominate the power
consumption in mobile devices. A proposed scheme for “slow” screen brightness and
CPU frequency reduction delivers mixed results. While brightness reduction appears
to be effective, perceived random CPU frequency changes introduce lags in games and
videos, which users have found annoying. This approach is not automated, but requires

users filling in questionnaires.

Bischoff et al. [8] investigate how QOE metrics can be used to optimise a system’s
energy consumption. Using an architecture model executed with the Gem)5 full system
simulator, they try to find CPU frequency and GPU core count for optimal energy
efficiency while maintaining a good QOE for the end user. Their QOE metrics are
web page render time in the mobile browser benchmark BBench and frame rate of a
3D game benchmark. They discuss optimisation strategies but do not present actual

implementations.

Song et al. [168]] capture user perceived SRT periods for Android workloads by using
Dalvik virtual machine instrumentation. They measure the period between user input
and the last UI thread screen update which was triggered by the interaction. Other than
previous work they evaluate this technique by comparing it to screen output recordings
and achieve a good correlation. They implement a DVFS algorithm which uses the
normal Ondemand frequency governor during interaction response times and aggres-
sive power saving techniques in the user-oblivious intervals. In contrast to the work
done in this thesis they do not consider a user satisfaction model to provide the right
amount of performance to save energy at interaction lag time. Also their test set is

limited to 7 applications which run manually crafted MonkeyRunner scripts.

Zhu et al. [|152] present an energy efficient scheduling algorithm for an Android plat-

form with heterogeneous cores which is closely related to the work presented in Chap-
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ters [ and [7] They optimise energy consumption by providing “just enough” perfor-
mance to meet end user’s quality of service (QOS) expectations for executed events.
Similar to the approach presented in this thesis, they learn correct performance settings
for distinct event handlers by observing multiple samples. They apply a user satisfac-
tion model to decide how much performance settings can be reduced before slowdowns
become intolerable. Their method is, however, restricted to mobile web applications
running in the Chromium browser. Also, they do not consider interaction lag as seen
by the user. Rather they derive optimal QOS from event handler latencies which do

not necessarily correlate with what the user actually sees.

3.3.2 Machine Learning Driven DVFS

A range of machine learning based techniques was developed by scientists to achieve
energy efficient DVFS. Most of them are evaluated on desktop or server systems [[169-
175]. A few, however, consider embedded systems [[176, |177]. The most common
approach is to capture micro-architectural features such as CPU performance counters,
CPU utilisation or memory behaviour [169-173,|176]]. Collected features are used to
build static prediction models which are applied online to predict optimal performance
settings. This approach works well for the workloads the models are trained for but

can encounter problems as soon as unseen workload characteristics are encountered.

Reinforcement learning (RL) can be used as a method of dealing with unseen work-
loads. The learning system dynamically learns correct behaviour over time and is able
to adapt to changes. Shen et al. [174] and Islam et al. [175] present RL approaches
to drive DVFES in desktop environments. Both, however, train their system to achieve

good results for batch workloads and do not consider interactivity or SRT.

The learning based DVES study with the closest relation to the work done in this thesis
was done by Li et al. [177]. They present a supervised learning based energy man-
agement technique for Android systems called SmartCap. Collecting features such as
CPU utilisation, touch behaviour and accelerometer data they build a neural network.
It predicts a CPU frequency cap on application granularity. The frequency cap serves
to save energy and is chosen by considering user experience feedback collected via
questionnaires. They try to overcome the problem of unseen applications by provid-
ing a user feedback mechanism to send experience feedback to a server. The server

processes the feedback to include the new application by training a new model and
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distributing it to clients. Considering the size of modern smartphone applications it is
unlikely that performance settings on application granularity are sufficient to achieve
optimal energy efficiency results. Furthermore, improving the prediction by relying on

user feedback is likely not practical in a realistic scenario.

3.4 Summary

DVES technologies have been developed for decades. Recent technologies such as
heterogeneous processing, however, extend DVES capabilities by increasing the fre-
quency scale with additional cores. This increases potential energy savings and raises
the demand for intelligent DVFS solutions once more. Over the last few years user
interaction driven energy saving techniques on mobile devices became a hot research
topic. Itis a way of gaining significant energy savings from DVFS by considering how

a user perceives CPU frequency dependent system performance.

To support development of new tools a methodology is required to benchmark energy
savings and QOE for mobile workloads. Workload automation techniques and inter-
active benchmarks exist but none of them systematically quantifies SRT durations as
seen from the user’s point of view. Chapters [4] and [5] present such methodology and

demonstrate energy saving potential.

Within the last year, studies were published which consider SRT to improve DVFS
energy efficiency on mobile devices. They show, however, limitations in the workload
they can handle by focusing on browser interactions or only idle periods between inter-
actions. Additionally, non of them systematically compares captured SRT periods to
the actual screen output as seen by the user. The DVFES algorithm developed in Chap-
ter [] and Chapter[7]is evaluated against realistic workloads captured from real users.
Also, it identifies SRT periods using screen output data by processing information from

Android’s display subsystem.



Chapter 4

Benchmarking QOE for Interactive
Mobile Workloads

4.1 Introduction

The research goal of this thesis is to improve the energy efficiency of DVFES algorithms
for modern mobile devices to prolong battery life. DVFS allows the OS to trade per-
formance for power and energy, and vice versa. The DVES strategies of the standard
Linux frequency governors like Ondemand or Interactive are based on the current load
of the CPU. As soon as the load of a core reaches a high-threshold, the frequency is
raised and when it falls below a low-threshold, it is lowered again (see Section @])
This approach works well for non-interactive workloads to deliver performance when

it is needed by the core and to save energy when there is nothing to do.

The results of experiments conducted in this work, however, show that the standard fre-
quency governors often set the CPU frequency incorrectly for interactive workloads.
They raise the frequency when the user does not need extra performance — for example,
when a background task executes while the user is reading text and is unconcerned how
quickly the background task completes. The governors also raise frequencies more
than is needed to satisfy the user — for example, humans cannot adequately tell the dif-
ference between a task running in ten milliseconds or one hundred milliseconds [11+-
13]. In these cases, the frequency governor wastes energy. Conversely, the governors
will not maintain a high enough frequency for long enough and the user will be irri-

tated, waiting for a task to complete. It is, therefore, critically important to consider

44
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Figure 4.1: Execute an interactive workload and record screen output in a video. Au-
tomatically identify interaction lag timings in the video and evaluate them in terms of
user satisfaction.

the user’s point of view, i.e. how he perceives device output, while evaluating how well
a frequency governor performs to achieve the best energy efficiency while at the same

time providing a high quality of experience (QOE).

None of the current mobile benchmark suites, however, come with an easy-to-use and
deterministic method to evaluate user perception for an interactive workload [[131-
133]]. A classic approach to evaluate user perception is using questionnaires [136),
140]. This is, however, a long and demanding process which requires a lot of exper-
iments with many different users to get a statistically sound result. One could reduce
the statistical error by making sure that a user always executes the same chain of inter-
actions with the device for every run through of an experiment. For a human, however,
this is not only tedious, but a nearly impossible task, especially as the length of the

benchmark exceeds a certain time span.

This chapter will introduce a methodology that enables the recording and replay of
custom interactive workloads on Android mobile devices, and automatically evaluates
the effects of changes to the system in terms of user perception. Figure @.1] shows the
concept of this methodology. To get a clear picture of how the user perceives the sys-
tem, the methodology’s first step is executing an interactive workload and capturing a
video of what the screen is showing. In the second step, the recorded video is reviewed
and the beginning and end of each interaction lag found in the video are marked. In
this thesis the time between user input and the time when the user feels that the system
has processed his request is called interaction lag (see Figure 4.2). The HCI research
community also calls this period system response time. Section 4.2| will describe the

concept of interaction lag in an interactive workload in more detail. Marking the be-
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ginning and end of all interaction lags leads to an interaction lag profile that lists the

length of all lags the user perceived in the executed workload. This profile enables the

comparison of the durations of those lags to another execution of the same workload

Input
Serviced

possibly using a different system configuration.

Input
Received

Calendar
tapped loaded

Figure 4.2: Interaction lag is the time between user input and the time when the user
feels the input has been serviced by the system. In the example, the interaction lag
begins when the user clicks on the calendar and ends when the calendar is fully loaded.

Using the methodology presented in this chapter, a mobile benchmark suite for the
Android system is generated. This benchmark is composed of 16 realistic interaction
scenarios recorded from actual users. It serves as a means of evaluating changes to
the system in terms of QOE. In a first step, QOE is measured considering the duration
differences between distinct interaction lag profiles. In the next chapter, interaction lag
profiles of all captured videos are used to derive a “user irritation” metric. It can be
used to decide which system configuration was less irritating to the user due to shorter

interaction lags.

To demonstrate the benchmark’s feasibility, it is executed multiple times while for

each execution the CPU is fixed to a certain frequency level. Afterwards, the effect of
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varying frequencies on the duration of interaction lags is evaluated. This shows that
lag durations shorten the higher the frequency is raised. Durations do, however, not
decrease linearly but saturate at a certain frequency. Hence, duration differences of the
same lag between the highest frequencies are minimal. This leads to the assumption
that it is not always necessary to use the highest possible frequency when executing
a lag to satisfy the user. Therefore, energy consumption can potentially be reduced
without stretching the length of interaction lags and lowering QOE. This assumption is
confirmed in Chapter [5| where an Oracle study identifies an optimal frequency profile

using the benchmark generated in the current chapter.

4.1.1 Contributions

The contributions of this chapter are:

1. A record and replay mechanism to deterministically replay realistic interactive

workloads on the same or another mobile device,

2. a set of interactive mobile workloads used in this study. These form a suite
of realistic, repeatable, automated, interactive workloads that can be used by
others to compare frequency governor characteristics as well as other system

modifications, and

3. automatic detection of interaction lag, based on non-intrusive analysis of video

output and device event queues.

4.1.2 Motivating Example

Figure [4.3|shows a short snapshot of how the frequency of the CPU adapts to an input
event for two different DVFS governors. The beginning of the user input is marked at
point A. Point B marks the time at which the user would like the input to have been
serviced. The thin line represents the frequency using the Ondemand governor, while
the bold line represents the decisions of an alternative DVFES governor. The Ondemand
governor uses multiple frequency levels, usually alternating between the highest and
the lowest frequency. With full knowledge of the user’s perspective, the alternative
governor raises the frequency immediately after the input and holds it long enough to

ensure that processing is complete before the user is irritated.
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Figure 4.3: Snapshot of the behavior of the Ondemand governor and another more
energy efficient governor for an interaction recorded using this chapter’s novel method.
The thin black line indicates frequency choices made by Ondemand over the course of
the executed workload and the thick red line shows the frequency selections by the
more energy efficient governor.

A group of different users was not able to distinguish between the two frequency con-
figurations when confronted with a video of this short example. They were satisfied
with the performance of both. But despite this similarity in terms of the user percep-
tion of performance, the Ondemand governor needs about 30% more energy. In this
work two major issues were identified that cause this significant difference in energy

consumption:

1. Ondemand raises the frequency at times where the user would not notice a dif-
ference between a fast or a slow task and therefore would not care. This happens

outside of interaction lags.

2. When the user does care, e.g. inside of interaction lags, Ondemand overshoots

the goal. It raises the frequency higher than necessary to satisfy the user.

Necessary information to avoid these issues can be found when considering the user’s
point of view of the system. They must include when the user starts interacting with
the system, when the user feels that the interaction has been processed and how short
the time in between needs to be for a satisfying response time. This interaction lag
information can then be used to rank a frequency governor in terms of energy efficiency
and QOE.
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Since current mobile benchmark suites [131-133]] do not offer a way of identifying
user interaction lag, the work of this thesis’ first technical chapter focuses on creating
a new methodology. The identification of beginning and end of user interactions for a
mobile workload was initially performed using a straightforward approach. In a first
experiment, a camera was pointed at an Android Galaxy Nexus and a workload was
executed. An analyst would then open the recorded video in a standard video editing
tool and step through it frame by frame (see step two in Figure 4.1). Every time he
identified a frame as the one where the user submitted an input command, he set a
begin-marker. Every time he decided that the system now looks like it has serviced the
input, he set an end-marker. Afterwards, he extracted the number of frames between
all markers and had an interaction lag profile. Now two profiles of different executions
of the same workload could be compared or overlaid with the corresponding frequency

profile to see which frequencies the governor selected.

Unfortunately, the process of marking up a 10 minute video (18000 frames at 30 fps)
of a relatively interaction intensive workload takes approximately 4 hours and 15 min-
utes. This is clearly too costly and inefficient to be of any use and it would be even
more so if this process would be used to produce enough data for a thorough study. As
an example, the results presented in Section [4.6]and Section [5.6| required 16 different
10 to 15-minute workloads, each one executed for 17 different frequency configura-
tions, with each configuration run 5 times in order to get statistically sound data. All
executions translate into roughly 270 hours of video material, for which 6729 hours of
markup work would be needed, or about 3 and a half man-years. It is clear that if inter-
active workloads are to be captured and studied, this process needs to be automated to
a high degree. Section 4.3 will present such an automated novel methodology which
allows reducing the manual work to a total time of about 2 and a half hours — a speedup
by a factor of 2700 x.

Next to considering the user’s perspective, a second important requirement for im-
proving the frequency governor’s energy efficiency is to have realistic and repeatable
workloads. For this thesis a group of different users was asked to execute the legacy
mobile benchmark suite as proposed in [131]]. It consists of playing a Guitar Hero
like game, one minute of audio playback, one minute of video playback and a browser
benchmark. The browser benchmark automatically loads a web page, scrolls to the
bottom and loads the next one. The results of this experiment showed that executing

the game manually, as proposed, leads to input event traces with timings that vary by
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0.5 to 1 second between multiple runs. The audio and video playback only require a
single interaction for the whole workload which is not enough to analyse interaction
lag. The browser benchmark is repeatable but none of our users found that it represents
a realistic mobile workload since they would not use a device in such a way. A way of
recording and replaying actual, rather than artificial, user interactions is needed with
millisecond accuracy to get representative workloads. These need to be repeatable
without major deviations in order to compare multiple executions. With the technique
presented in this chapter, users can create repeatable and realistic workloads as they

would naturally execute them.

4.1.3 Overview

This chapter is structured as follows. Section 4.2 will give more detailed information
on how an interactive mobile workload is perceived by a user focusing on its visual
representation. Section 4.3| will present the novel approach of automatically detecting
interaction lag in realistic and repeatable workloads. This is followed in Section 4.4
by a description of the generated workloads using recordings of real user interactions.
Experimental setup to execute the workload and apply the methodology to a CPU
frequency study is shown in Section[4.5] A presentation of experimental results can be

found in Section 4.6, which are summarised and concluded in Section4.7]

4.2 The User’s Point of View

To improve DVFS techniques for interactive mobile workloads it is necessary to know
how frequency changes affect system performance as seen from the user’s point of
view. In this study, the user’s point of view refers to the user perceived screen output. In
interactive workloads an indicator for performance differences perceptible by the user
is the time the system needs to respond to input. As shown by various researchers (see
Section [2.3] for details), too long system response times increase the user’s irritation,
cause him to make mistakes and reduce QOE. Knowledge of when the user feels that
the system handles an interaction and when he perceives the system as idle to await
the next one are therefore useful to determine when high performance is required and

when it can be traded for energy efficiency.
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The methodology presented in this chapter makes use of interaction lag durations to
quantify a user’s QOE with a workload execution. It identifies interaction lags by
marking their beginning and end in a video recording of the workload. To provide a
clear picture of what interaction lags for Android workloads look like, the following
section will present an execution example and show how it is perceived by the user.
Furthermore, it will point out interaction lag boundaries in the visual representation of
the executed workload by decomposing it into two major types of execution periods:

user perceived interaction lag period and user perceived system idle period.

4.2.1 Interactive Workload Example

>

Figure 4.4: Screen output of a short sample of user interactions with an Android device.
Screenshots along a timeline show the mobile device’s screen output for every executed
user interaction. A hand symbol marks user touch screen taps. First the calculator is
started and used. After returning to the home screen the Gallery application is started
to look at pictures.

Time

Figure [{.4] shows the screen output for a few seconds of user interactions with an
Android device. Execution time spans from left to right. A screen snapshot was taken
at every time the user interacted with the touch screen over the course of the execution.
In detail, the course of the interactions goes as follows: Execution starts on the home
screen where the user taps on the calculator application shortcut. Once the calculator
is loaded the user taps on key nine and afterwards on delete which removes the number
again. A tap on the back key closes the calculator and brings the user back to the home
screen. Now the user taps on the home screen shortcut for the Gallery application
which brings up the Gallery. He taps on the visible album and is presented with its
contents. He selects the cat image which is opened and presented in full screen. Two
successive taps on the back button bring the user back to the album overview in the

Gallery.

This short interaction example demonstrates what the mobile workloads presented in
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this thesis look like. Each interaction is started with the user issuing input by tapping
or swiping on the touch screen of the device. The system then reacts to the input and
presents the corresponding results. This process is followed by the next input and so
forth. Points of interest in a workload are therefore times at which input is issued to

the device, i.e. where interaction with the device happens.

4.2.2 Lag and Idle

The time between inputs can be subdivided: After the user issued an input he usually
expects the device to react to it, e.g. by starting the Gallery application. Once the
Gallery is started he takes some time to observe the presented result, decides on his
next interaction and proceeds. Shneiderman calls the first period “system response
time” (SRT) and the second “User think time” (UTT) [12]. The time after an input can
therefore be subdivided into a period where the user waits for the system to respond
and a time where he observes the presented result. This concept is depicted in more
detail in Figure {.5]

System

Re;i;:\:)zse @ @(I @
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User Think

time | SRT 1
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Figure 4.5: Distinct phases of interactive input. System response is followed by a user
think period until the user issues the next input. The straight and angled markers show
the beginnings of corresponding periods.

In this figure two input events happen which are marked on the time line on the bottom
of the figure. At the top of the figure, the corresponding screen output is shown. The
first input at (1) is followed by a period where the system responds by highlighting
the tapped homescreen shortcut, fading in the Gallery application and drawing the
albums (SRT 1). At (2) with the screen output B the user feels that the system has
finished processing the input and observes the result (UTT 1). Once the user decides

to proceed, he taps on the album to open it at (3) and the second response period starts.
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Now the system fades in the picture contents of the album (SRT 2). At (4), this is again

followed by an observation period once all pictures are loaded (UTT 2).

It is important to keep in mind that the subdivision is made from a user’s point of
view. It is likely that the underlying system activity does not exactly match what the
user is seeing presented on the screen. If the user perceived the system to be finished
loading the Gallery application, the system could in fact still be loading elements in
the background of which the user is not aware. While he is observing presented results
and is perceiving the system as idle a task could be issued by a timer to check emails

which is serviced in the background.
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Figure 4.6: User perceived workload compared to activity of the underlying system.
The activity is represented by the CPU load during workload execution. A thick grey
line marks beginning and end of user perceived lag time and a thin red line indicates
CPU load.

Figure [4.6] shows an example of underlying system activity compared to perceived
system activity. A single input and corresponding system response is shown in this
figure. It is presented from both the user’s point of view and the system side. CPU load
of a single core CPU is displayed to indicate system activity. The input as indicated
by a hand pointer in the first screenshot is again a tap on the Gallery shortcut which
opens the application. This time not only screenshots of input events are displayed
but also a few in between to indicate what happens during the system response. A
thick grey line indicates where the user perceived response starts and where it ends.
As soon as input is being issued the CPU load goes up. While it is lower towards
the end of the user perceived system response, it does not completely settle to zero.

There are also additional spikes during the following observation period. This example
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shows that there can be differences in activity depending on the point of view. Hence,
a promising DVFS approach is to provide high performance during periods of user

perceived activity and saving energy when the user thinks the system is idle.
The following terminology will be used for the remainder of this thesis:

Interaction Lag The interaction lag period is the system response period as perceived
by the user. It is the time span where the user waits for the system to finish
processing his request after an interaction has been issued. It is therefore called

lag.

System Idle The system idle period or simply idle period is the period following a lag.
It starts after the user feels that the system has finished processing the previous

input and lasts until he issues the next one.

Both interaction lag and system idle period can have various durations depending on
the corresponding interaction. If the text of an email is typed in, for each key press
both periods would be expected to be short, e.g. in the range of 200 - 500 milliseconds.
If an article is being opened and read on the screen the observation period could have
a length of several seconds. At the same time, loading the article to the screen is
also potentially longer than a simple key press. If a game is started and a loading
bar appears the interaction lag could last for several seconds while the system loads

necessary components.

The difference between the two periods is that the length of the interaction lag depends
on the system while the length of the idle period depends on the user. In the interactive
workload considered for the experiments in this thesis, the user would usually wait un-
til the system has finished processing his request before issuing the next input. As long
as he observes interaction results and thinks about what to do next the system appears
to be idle. Therefore, perceived system performance only depends on interaction lag
durations. As human computer interaction (HCI) research suggests, the user has an
implied deadline for an interaction lag (see Section[2.3.3)). If this deadline is exceeded,
the user’s impatience grows and QOE degrades. To automatically benchmark QOE for
an interactive mobile workload, the methodology presented in the next section captures

interaction lag durations.
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4.3 Methodology

This section will describe in detail how the methodology for automatic benchmarking
of QOE in interactive mobile workloads functions. Firstly, an overview of all steps
taken to automate the method will be presented. This is then followed by a detailed

description of each involved mechanic.

4.3.1 Automation Steps Overview
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Figure 4.7: This figure shows the automated version of the proposed method to create
repeatable and realistic workloads and to evaluate them in terms of user perception.
Part A shows how a workload is annotated. This task needs to be executed only once
per workload. It produces an annotation database containing an image of the expected
ending for each interaction lag. Part B is then fully repeatable for the same work-
load. Here the annotation database is used to automatically mark up a video of the
workload’s execution and produce a lag profile.

Instead of executing a workload manually for each run, user inputs are recorded once
and then replayed independently. Input events are captured directly from the Linux

input subsystem, so it is possible to replay them in exactly the same way and with
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accurate timings whenever needed. This is done by following the same approach as

presented in other studies [128]].

Knowing the exact timings for all input events already provides the beginning of each
interaction lag. Finding the ending of an interaction lag is automated in the next step.
The ending is the time when the user feels that the system has serviced his input. To
do this a matcher algorithm was implemented that uses a database of images. These
images show for each lag how the expected ending looks like on the mobile screen. The
matcher steps through the captured video of the workload execution frame by frame.
Starting at each lag beginning, it finds the corresponding lag ending by comparing each
frame to the expected image. With recorded inputs, the matcher and the database, the

workload is repeatable and its interaction lag evaluation fully automatic.

The image database is created by annotating the workload. Annotating a workload
means selecting an image for each interaction lag that shows how the mobile screen
looks like when the end user feels that the system has serviced his input. This needs
to be done only once, after which the workload will be reusable time and again. This
process was made easy for the workload creator by automating most of it as well. In
the manual markup method in Section d.1.2]the video analyst had to look at all frames
in the video that follow the begin frame to identify a corresponding end. Instead of
looking at all frames, the workload creator now only has to look at a small selection of
frames which already have a high potential of being the correct one. These potential
ending frames are automatically selected by a suggester algorithm for each lag. The
workload creator only needs to pick the right one. This takes on average only a couple
of seconds per interaction lag. The image the workload creator picked is then added to

the workload’s image database which is later used by the matcher.

Figure4.7|shows the automated version of the method derived from the former concept
in Figure Part A shows the annotation step which needs to be executed only once.
Here a prerecorded workload is run and a video of it captured. The suggester algorithm
then presents a selection of potential lag ending frames for each lag beginning and
the workload creator picks the correct ones. Part B is fully repeatable and can be
executed an arbitrary number of times for the same workload with different system
configurations or even different mobile devices. This is under the requirement that the
initial system state of the device is always the same. Again, a prerecorded workload
is run and a video is captured. The matcher algorithm now automatically finds the

corresponding lag ending for each lag beginning using the annotation database and



Chapter 4. Benchmarking QOE for Interactive Mobile Workloads 57

produces a lag profile. This profile can then be compared with profiles of other video

evaluations of the same workload in terms of user perception.

4.3.2 Automatic Record and Replay of Interactive Workloads

In order to accurately record and replay a workload executed on an Android phone,
input events are captured directly from the Linux input subsystem. This system has a
standard interface for handling the input provided by various peripheral devices and
sensors. On a mobile, those devices would be, for example, a touch screen, hardware
buttons, a light sensor, etc. The hardware driver format of the input events captured by
the single device drivers is converted into a standard input event format. All incoming
events for each active device can be accessed via the /dev file system interface. The
input event interface for the touchscreen of the Galaxy Nexus, for example, can be

found at /dev/input/eventl.

Workload Time Device Sensor Data
(usec) (type, code, value)
0 /dev/input/event0 3 57 2
33 /dev/input/eventO 3 53 317
o 48 /dev/input/event0 3 54 464
}9 62 /dev/input/eventO 3 58 73 T
c 81 /dev/input/event0 1 330 1 o
g 97 /dev/input/event0 3 0 317 @
§ 112 /dev/input/eventO 3 1 464
S 126 /dev/input/event0 3 24 73
2 150 /dev/input/event0 000
91974 /dev/input /event0 3 57 4294967295 3
91998 /dev/input/event0 1 330 0 o
92022 /dev/input/event0 000 S

Figure 4.8: Input sensor data recorded by the GetEvent tool for a single tap input on
the touchscreen. Recorded sensor data is split into type, code and value and gives
information on touch coordinates, size and duration.

A single touch is composed out of multiple input events as shown in Figure 4.8] The
three displayed columns show elapsed workload time (already translated from system
time since startup), the input device’s id (touchscreen in the given case) and sensor
data carrying various information. The first number specifies the type of event like a
key or button press, relative motion or absolute motion. The second number specifies
a code of which button or axis is being manipulated and the last number specifies the

actual value.
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Record Android provides a tool called GetEvent which is a front-end to reading the
/dev input event interface. When a workload is recorded, this tool is used to
capture executed input events together with exact timestamps. The recording
process needs no external hardware support, it can be executed on users’ devices,

while it is carried with them about their daily business.

Replay Android also provides a tool called SendEvent which is a front-end for writ-
ing to the /dev input event interface like the corresponding device driver would.
Unfortunately, this tool is very basic and does not provide enough functionality
and performance to replay recorded event traces accurately. Therefore, for this
study a custom event replay agent was implemented. This agent knows the input
event trace which was recorded and replays it with accurate timings. It is based

on SendEvent and adds required accuracy.

4.3.3 Capturing Screen Output
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Figure 4.9: A video of the mobile screen output is captured by recording an HDMI
signal with a video capture device like the Elgato Game Capture HD ||

Figure 4.9 shows how a video of the mobile device screen is captured. Rather than
using a camera, the direct screen output is captured via HDMI. This way image arte-

facts are avoided which would significantly complicate the process of comparing video
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frames with each other. Many modern mobile devices have either a MINI-HDMI
socket or support the MHL or SLIMPORT protocol which returns an HDMI signal
over the MICRO USB port. The HDMI signal is forwarded to a video capture device
like the Elgato Game Capture HD [178]] which decodes it and sends it to a desktop or
laptop via USB. There, an application records the signal and creates a video file with a

standard format.

4.3.4 Semi-Automatic Markup of Workload Videos
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Figure 4.10: The suggester algorithm maps successive video frames to a sequence of
ones and zeros. A zero is assigned to a frame that looks equal to its predecessor and a
one to each frame that differs from it. Each one preceding a zero is then suggested as
potential lag ending since it marks the beginning of a period of still standing images.

As mentioned in Section[4.3.T|a semi-automatic process is used for marking interaction
lag beginnings and endings in a workload video. Instead of looking at all possible
frames, a suggester algorithm picks out a small selection of frames that have a high
potential of showing the correct lag ending, i.e. the state of the system where the user
feels that the system has finished servicing his input command. The workload creator

can then quickly pick the correct one for each lag out of the provided selection.

Figure {.10] shows an example of how this suggester works for user input leading to
an interaction lag. The interaction being executed is a click on the Gallery shortcut on
the home screen. This interaction will cause the Gallery application to start. The state
considered the end of servicing the input is when the Gallery is completely loaded and
showing the image album overview. The small box on the top left side shows that an

input occurs at video frame 2058 and the small box on the top right shows the next



Chapter 4. Benchmarking QOE for Interactive Mobile Workloads 60

input at frame 2254. The ones and zeros in the long box show the suggester’s inner
representation of each frame in the current video snippet. The suggester algorithm
compares successive frames and assigns a zero to a frame that is equal to its predeces-
sor and a one to a frame that is different. For visibility, chains of zeros are summarised

using curly brackets.

The single number one above the first image indicates a frame change where a blue
highlight is drawn around the home screen shortcut of the Gallery after tapping on it.
This is followed by a short pause and therefore a string of zeros. Then the application
window fades in with successive frames constantly changing. A headline appears and
changes from “Gallery” to “Albums” and finally an album item is drawn by popping in

its background, name and title image in succession.

The images on the bottom of Figure 4.10]are all suggestions made by the algorithm. In
the workload used for this study’s experiments, the point at which users determine the
end of processing an input is always the last of some number of changing frames, i.e.
the last one in a chain of ones. The end point is never during a period of unchanging
frames, i.e zeros. The algorithm suggests an end image for each one preceding a zero.
That way a frame is suggested if it is the first of a period of still standing images (a
range of zeros following a one). There are always periods of still standing images
which are picked out as the potential ending of an interaction lag. The still period can
be very short, for example with on-screen keyboard input, or very long, for example

when reading an e-book.

In Figure {.10] multiple suggestions appear while the Gallery loads up single elements
of the final screen one by one. Loading the Gallery takes about 200 frames at the lowest
CPU frequency (about 6 seconds at 30 fps) and leads to 8 to 10 suggested images. The
number of frames the workload creator has to look at is therefore reduced by a factor
of 20. When a workload contains long periods without screen updates the reduction in

the number of frames can be much larger.

The suggester can be configured for each interaction lag to make the process of picking
a frame more convenient and faster. If, for example, a blinking cursor is producing a
long string of suggestions, the suggester can be set to allow a certain amount of pixel
difference between frames. If a small animation prevents the suggester from finding
still standing images, a mask can be applied to hide it. The amount of zeros following

a one can be specified to control the expected length of a still period. If it were set to 30
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in the given example, the number of suggestions would be reduced to 2 and the correct

one would still safely be caught. A workload creation GUI allows these settings to be

explored and tuned easily.

4.3.5 Detecting Lag Endings Using the Annotation Database

Workload Execution 1 Workload Execution 2 Masked Image

Figure 4.11: Parts of the images being compared can be masked out to handle a certain
degree of non determinism between workload executions. In the example, the clock is
masked out so the matcher can find the required ending image for different workload
executions.

Now that an annotation database was produced containing an image of how each in-
teraction lag ending is expected to look like, it can be used to mark up videos of any
further execution of the same workload. The matcher algorithm steps through the video
frame by frame and looks for a lag beginning according to input timings. As soon as
a time is reached where an input was issued, it picks the corresponding lag ending
from the annotation database and compares all following frames with that image until

it finds a match. The time between beginning and end is then saved in a lag profile.

In order to find ending frames in new videos of the same workload, it is important
that the executed input events stay in sync with the state of the system. For exam-
ple, if a button needs to be pressed, the system must have reached the spot where
the corresponding screen is visible. This will then lead to the expected ending image
and will allow the next input to be placed correctly. This can become an issue for
random contents like advertisement pop-ups or randomly generated levels in games.
In the workload recorded for this study, these contents were avoided where possible.
However, the method is able to handle a certain degree of non-determinism with the

following techniques.

When annotating the workload in the markup process, it is possible to specify addi-
tional information for each lag. For several lags it is necessary to specify an image

mask to be used by the matcher. If, for example, the system clock needs to be masked
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out when comparing images or a random advertisement looks different for every time
a workload is executed (see Figure d.TT)). It could also happen that the user input leads
to an interaction which ends up on the exact same screen as where it was started. For
example sending an email could pop up a loading bar which disappears again after
the email is sent. The suggested lag ending therefore looks like the beginning. In
this case the workload creator can specify that the matcher should look for the second
occurrence of the required image. The GUI makes it easy for workload creators to
change mentioned parameters and to both design custom masks and to apply standard
ones. Such additional information is saved together with the image in the annotations
database and helps the matcher to successfully find the lag endings in a video. With

this system, the workloads can be replayed and analysed fully automatically.

With a methodology to generate workloads and automatically annotate interaction lags
in place, a benchmark workload can be created. The following sections will present
details on the generated workload. Furthermore, experiments will be presented which
were conducted to test the feasibility of the lag annotation method. Experimental re-
sults show how varying the CPU frequency affects lag durations in an interactive work-
load.

4.4 Generated Workload

To generate a representative mobile workload 16 people were asked to use a mobile
device with the recording system installed as presented in Section Each used
the device for about 10 to 15 minutes. No further instructions were given, beyond
asking that they “exercise the software”. Their interactions with different applications
and widgets were recorded on the device (see Table [4.1)). Before users were allowed
access, the target platform was reset to a known state to ensure that the recorded work-
load could be rerun from that same state later. Table 4.1] gives an overview of which
activities users executed. In total, user activity time of 190 minutes was recorded.
According to a recent study of eMarketer [179]] the average Americans used their mo-
bile phones for 174 minutes over a 24 hour period. The generated workload therefore

covers more than a day of normal phone usage.

Figure {.12] shows an input classification for all datasets recorded from all users for

this study. Left hand side bars show gestures classified as tap inputs and swipe inputs.
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Table 4.1: An outline of the main activities users were executing in the recorded work-
load.

Executed Activity
Image manipulation with Gallery application.
Playing a logo quiz game.
Pulse News widget and multimedia text messaging.
Pulse News application.
Movie Studio video creation.
Calculator calculations.
Writing emails with Gmail application.
Google Translate and Dictionary application lookups.
Writing and editing notes with the Google Keep application.
Reading and managing articles with the Pocket application.
Browsing descriptions of sights with the Stay application.
Checking weather updates with the Weather Pro application.
Browsing recipes with an Indian recipes application.
Browsing music albums and tracks.
Creating and editing contact entries.
Using the telephone dialler application.
Browsing podcasts with the BeyondPod application.
Using the stop watch application.
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Figure 4.12: The graph shows an input classification for all input traces of the workload
recorded from participating users. Left hand side bars show gestures such as taps and
swipes and right hand side bars show spurious and actual lags.

The tap inputs are dominating due to the nature of the recorded workloads. In total
1935 input events were recorded. Out of which 4% were swipes and the remainder

taps. The method can currently only handle interaction lags that result from tap inputs
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and simple swipes like changing the home screen. More complicated gestures such as
complex swipes, pinches or drags mostly lead to interaction lags that require a different
analysis which is generally described as Jank lags and considered for future workﬂ
Those interactions were excluded from user generated content. Also interaction events
are excluded at the beginning and the end of recording periods where the interface to

activate and deactivate recordings was used. This leaves a total of 1852 interactions.

Right hand side bars show the number of inputs identified as actual lags and inputs that
were spurious lags. It can happen that an input event does not lead to a reaction from
the system. If the user, for example, taps next to a button or a settings menu is not
supported for a certain application, the system will just ignore the input. Therefore,
these inputs are considered as spurious lags and ignored. They make up a share of 1%

of the total input event count.

4.5 Experimental Setup

Figure 4.13: Qualcomm Dragonboard APQ8074 (image source ||

!Jank lags appear in long animations such as video playback or quick scrolling [180]. They are
perceived as a “stutter” in the frame rate. In those cases the system is unable to process new frames fast
enough and drops some. This leads to a user experience which appears unsmooth.
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To analyse the length of different interaction lag periods for varying performance the
Qualcomm Dragonboard APQ8074 was used in this study (see Figure {.13). The
Dragonboard is based on the Snapdragon 800 quad core processor. It has the same
underlying architecture as the Google Nexus 5 mobile phone but allows easier access
to connectors and interfaces to measure energy and modify various parts of the sys-
tem. The board runs Android Jelly Bean version 4.2.2 with Linux kernel 3.4.0. For
the experiments all cores are switched off except one. This is done to avoid statistical
noise from load balancing between different cores when the CPU frequency is used to

control performance.

In order to gather sufficient data points to analyse the influence of performance on
interaction lag durations, the generated workload was executed for each available core
frequency. During those executions the CPU is fixed to the selected frequency over the
whole runtime. The Snapdragon 800 processor used for this study allows 14 different
frequency points ranging from 0.3 GHz up to 2.15 GHz. To reduce the statistical
error, this process was repeated 5 times for the entire workload. The standard error
is calculated across all 5 iterations. Altogether the generated workload was executed

5 x4 =70 times.

4.6 Experimental Results

Figure shows a histogram demonstrating the distribution of interaction lag dura-
tions over the whole recorded workload. The frequency configuration chosen for these
graphs is a medium frequency of 1.04 GHz. The bulk of the interaction lag durations
falls within 300 and 933 milliseconds with a median of 516 milliseconds. The bucket
size chosen for the histogram is equal to the duration of 5 frames. The videos were
recorded at 30 fps which gives a single frame a duration of 33.33 ms. Figure
shows a zoomed-in version of the data. The x-axis is limited to 4 seconds to give a
more detailed overview of the lower part of the lag duration distribution. Here the
bucket size is reduced to a single frame. This is the minimum possible resolution for

lag durations due to using the automatic lag duration detection method described in

Section[4.3.4]

To better understand which interactions users executed in the workload Figure [4.15]

shows a human readable duration categorisation of interactions from the generated
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(a) Five frame bucket size.
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(b) One frame bucket size and zoom in on the first 4 seconds.

Figure 4.14: Histogram plot of interaction lag durations for a medium frequency con-
figuration of 1.04 GHz. The box-and-whisker plot in the lower part of each sub figure
extend from lower to upper quartile values, with a line at the median. The whiskers
show the range of the lag duration at 1.5 times the interquartile range, while flier points

are those past the end of the whiskers.
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Figure 4.15: Shares of interactions according to duration categories. The left hand bar
represents the share of the total interaction count for the given category, the right hand
bar shows the share of the total workload time. Error bars show the standard error
which is calculated over all 5 iterations of the workload execution.

workload. All durations are taken from a workload execution on medium frequency of
1.04 GHz. The four categories are instant response (50ms - 200ms), short lag (200ms
- 1s), medium lag (1s - 3s) and long lag (3s and above). Bars on the left indicate
the share of total interaction count for each category and bars on the right indicate
the share of total interaction duration of the corresponding category. With 64% most
interactions are short which can be explained by looking at the users’ activities in
Table 4.1 They spent a lot of time with typing-heavy applications such as writing
emails, using dictionaries, drafting notes or playing a quiz game which requires putting
in guess words. Typing a letter on the on-screen keyboard usually has a short response
time. A few long response times can be seen where the interaction lag time goes up
until 15 seconds. Among them are starting up applications that need to load content
from the sdcard such as Pulse News, the Indian recipe or the Stay tourist application.
Also saving modified images to disk and encoding videos from the Movie Creator are
among them. When looking at the distribution of total interaction lag duration instead
of total interaction count for the given classification: short and medium durations have
about the same share of 40% each. Most of the rest is taken by long tasks with 17.2%
and only 2.4% are used by instant responses. The latter ones are interactions such as

ticking a checkbox or highlighting an article in the Pulse News widget.

Figure [4.16a) shows a series of violin plots for the lag durations of all available CPU
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frequencies the experiment was executed for. The y-axis is on a [og, scale to increase
the visibility of outliers. The overall shape of each plot is about the same with a bulk
around the centre and thinning out towards longer and shorter lag durations. It is,
however, more or less vertically stretched out depending on frequency height. The
higher the frequency, the shorter the lags and therefore the less stretched out the violin
plot. But also the difference in vertical span becomes minimal at around 1.5 GHz going

towards higher frequencies.
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(a) Violin plots of the lag durations for all available frequency configurations with y-axis on
log, scale. The dot in each plot marks the corresponding mean.
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(b) Trend line for all total lag duration means in frames for all available frequencies (a frame
has 33.33 ms). The grey ribbon around the trend line indicates the 95% confidence interval for
points on the fitted curve.

Figure 4.16: Distribution of lag durations over the generated workload.



Chapter 4. Benchmarking QOE for Interactive Mobile Workloads 69

Figure 4.16b] displays this trend more directly. Here, the lag duration mean in frames
of each available frequency configuration is shown. An approximation curve is fitted
to all data points. It shows that lag duration mean decreases non linearly from lower
to higher frequencies. It follows an exponential shape and starts to saturate around
1.5 GHz. Above 1.5 GHz the difference to the fastest possible frequency of 2.15 GHz
is no more than 2 frames. According to HCI research [11+13] the end user does not
notice a duration difference below 150 to 200 ms, i.e. about 5 to 6 frames. This means
that a frequency lower than the fastest possible can be used for a large number of

interaction lags without causing a performance difference perceptible by the user.

4.7 Conclusion

In this chapter a novel methodology was introduced to automatically benchmark user
QOE for interactive mobile workloads. It does so by identifying interaction lag peri-
ods following user interactions. Lag profiles generated for two executions of the same
workload can be compared in terms of interaction lag times. Differences in lag times
indicates which execution provided higher QOE. In the next chapter this method will
be improved by introducing a single metric mapping multiple interaction lag durations
to a single user irritation value. By recording and replaying user interactions with an
Android device a real interactive workload was built and used for a feasibility study.
In this study system performance was changed by fixing the CPU to different frequen-
cies. The effect of performance changes on interaction lag durations was analysed.
With the experiments conducted in this chapter it was shown that the length of the
interaction lags as they are perceived by the user can be influenced by modifying the
CPU frequency. More importantly, it became apparent that there is room for selecting
frequencies lower than the highest possible one for interaction lags without reducing

QOE to an amount noticeable to the user.

The presented methodology and the generated workload will be used in the following
chapter to evaluate how well current DVFES governors are performing in terms of en-
ergy efficiency and QOE. Results of this chapter will show were they waste energy by
selecting too high frequencies. Furthermore, an Oracle will be developed which is able
to find a frequency profile for a workload which results in the lowest possible energy

consumption whilst not showing perceptible performance loss to the user.
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QOE Driven DVFS Oracle Study

5.1 Introduction

The previous chapter introduced a novel methodology to identify interaction lag in
interactive mobile workloads. Additionally, a representative workload was generated
by recording interactions from actual users. By replaying the workload and applying
the lag marker methodology a mobile system can be benchmarked in terms of user
perceived lag timings. These two components are necessary to accomplish this the-
sis’ goal of optimising DVFS energy efficiency for mobile workloads by considering
the user’s point of view. The optimisation approach taken in this study is driven by
the observation that current standard DVFES techniques on mobile devices use too high
frequencies where the user would not notice a performance difference. These observa-
tions are presented in this chapter by benchmarking lag durations of standard frequency

governors and evaluating where they choose energy inefficient frequencies.

To identify those inefficiencies frequency selections of standard governors are com-
pared to a perfect Oracle baseline. The Oracle always selects frequency levels which
result in maximum energy savings whilst showing no perceptible performance reduc-
tions compared to running at the fastest frequency. To quantify perceptible perfor-
mance differences, a user irritation metric is introduced. This metric functions by
considering a threshold for the duration of each interaction lag in a workload. If lag
duration exceeds the threshold the user becomes increasingly irritated. If a lag duration
stays below the threshold, performance differences are imperceptible. The accumu-

lated time by which all lags in an executed workload exceed corresponding thresholds

70
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serves as overall irritation score aka QOE score. For each lag, the Oracle picks fre-
quencies which stay below the threshold whilst still achieving energy savings. In be-
tween lags the Oracle picks the least energy consuming frequency. Here, performance

is irrelevant since the system appears idle to the user (see Section §.2)).
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Figure 5.1: This figure shows what an Oracle frequency selection for an interaction
example looks like. These frequencies result in maximum energy savings and have
no perceptible performance impact on lag execution time. At lag time the lowest fre-
quency still below an irritation threshold is chosen. At idle time the frequency with the
lowest energy consumption for that period is chosen.

The concept of the Oracle’s frequency selection is depicted in Figure This figure
shows two interactions which are indicated by the markings on the time axis and the
screenshots in the upper part. Screenshot A and C show the screen output of lag begin-
nings. A finger icon marks where the user touched the screen. The first touch starts the
Gallery application which finishes loading on screenshot B. The graph on the bottom of
the figure shows frequency selections made by the Oracle. For the lag period between
A and B a frequency level is selected which causes a lag duration shorter than the lag’s
irritation threshold (marked on the time axis). At the same time the frequency is not
the highest possible and energy is preserved. Using perfect knowledge of all possible
frequency configurations, the Oracle selects a frequency for the following idle period

which results in the highest energy savings for that period.

The standard Android frequency governors evaluated against the Oracle baseline are

Ondemand, Interactive and Conservative. Energy efficiency and user irritation results
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show that neither of them performs particularly well. Up to 32% energy savings are
possible whilst delivering a user experience that is better than that provided by the
governors. Furthermore, results show that it is possible to save 45% energy with per-
formance that is indistinguishable from permanently running the CPU at the highest

frequency.

5.1.1 Contributions

The contributions of this chapter are:

1. A metric derived from interaction lag profiles to classify user irritation for a

particular workload and,

2. a study on how the measurement methodology from Chapter 4 can be used to
provide a baseline frequency profile with maximum energy-efficiency for inter-
active workloads. This is done whilst maintaining the same or even improving

system responsiveness compared to three standard governors.

5.1.2 Overview

Section[5.2 will introduce the lag duration based metric used to give an irritation score
to workload executions. This is followed in Section [5.3| by a description of the power
model used for calculating energy consumption of an executed workload. Section[5.4]
will provide a detailed description of how the Oracle selects frequencies for interaction
lag and idle periods. The experimental setup to evaluate frequency governors against
the Oracle is described in Section [5.5] and corresponding results are discussed in Sec-

tion[5.6] Lastly, Section[5.7) will summarise and conclude the chapter.

5.2 Irritation Metric

The methodology presented in Section {.3] generates interaction lag profiles for each
annotated video of an executed workload. A lag profile lists the lag length for each
interaction lag in the video. This profile is used to compare the lag durations of multiple
executions of the same workload for different performance configurations. To quantify

lag durations of a single workload execution a new irritation metric is introduced which
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Figure 5.2: This figure shows the timeline of a single interaction lag. Each circled
number stands for the lag ending of a specific system configuration. Each lag length
that stays below the specified Irritation Threshold does not count as irritating and for
each lag length that exceeds it a penalty is applied.

assigns an irritation score. Different executions of the same workload can then easily

be compared in terms of user irritation and thereby QOE.

Figure [5.2] shows a timeline for a single interaction lag. The lag’s beginning is marked
and each circled number stands for a lag ending. The endings were found in exper-
iments where the same interaction was executed with different CPU frequencies and
therefore the lag duration differs. (1) marks the ending of the fastest frequency and ()
the ending of the slowest. Before applying the metric it needs to be configured by set-
ting an Irritation Threshold. If the lag length is below this threshold, it does not count
as irritating to the end user, if it is above, an irritation penalty is given. The penalty is
the amount of time by which the lag duration exceeds the threshold. The metric is an
accumulation of the penalty for each lag in the workload, i.e. the total amount of time

a user is irritated by too long lag times.

For the experiments conducted in this chapter, the Irritation Threshold is set indepen-
dently for each lag. This is done while creating the workload as described in Chapter[d]
When picking the interaction lag ending from the suggested selection, the workload
creator can choose the threshold from a standard HCI taxonomy, for example the ones
presented in Section He can also apply a custom model or specify each Irritation
Threshold individually.

As explained in Section 4.2] the system idle period does not need to be considered
when calculating the user’s irritation. Since the length of the idle period depends on
the user’s decision to continue interacting with the device, there is no correlation to
system performance. An irritation tied to the system performance can therefore not be
applied. There might be other QOE factors next to performance which apply to the
idle period like screen brightness or frame rate, but they lie outside the scope of this
study. The irritation metric proposed here assumes an irritation of zero for each idle

period.



Chapter 5. QOE Driven DVFS Oracle Study 74

3000- 295825

2000 -
1748.01

Irritation in S

1000- 959.82

719.51
543.94

B39 260 19956
2% 12599

6052 47.82 2313 785 0

03 042 065 073 08 096 104 119 127 15 157 173 196 215
Frequency in GHz

Figure 5.3: Irritation metric applied to workload execution for different CPU frequen-
cies. The CPU was always fixed to the corresponding frequency for the entire execu-
tion of the workload. Error bars show the standard error which is calculated over 5
iterations of the workload execution.

To get an idea of how the metric is applied, Figure shows the metric’s results for
the generated workload executed for each available frequency configuration. During
execution the CPU is fixed to the corresponding frequency. To calculate the standard
error the workload is executed 5 times for each frequency. The irritation thresholds
used for this experiment is set to 110% of what the fastest frequency could achieve for

each lag. Setting irritation thresholds this way was chosen for two reasons:

1. It is assumed that the fastest frequency is fast enough to handle most interac-
tions with acceptable QOE. Additionally, the fastest frequency is taken as upper
cap since a higher frequency is not possible on the given device. With irrita-
tion thresholds configured in that manner, the metric therefore is only applicable
when looking at a single type of device. When using the metric for a different
case, for example, to compare multiple devices, customised irritation thresholds

can be configured.

2. According to HCI research [[13] presented in Section [2.3.4] a performance dif-
ference that is meant to be noticed by the user needs to be as high as 20% of
the original value. With 110% of the fastest frequency, this boundary is not
breached.

The y-axis of Figure shows irritation in seconds. According to the metric this
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can be seen as the total amount of time the user was irritated over the course of the
workload while waiting for the system to respond. The bars indicate that total irritation
degrades the faster the frequency becomes and the fastest frequency is by definition not

irritating.

5.3 Power Model

In order to calculate the energy efficiency of a workload with the currently selected
frequency profile, a power model is used. When executing a mobile workload with
the methodology presented in Chapter 4 a data monitor collects various execution
statistics. Among them is data on CPU busy time. Using the power model and the time
the CPU is busy during workload execution, the energy consumed by the CPU can be
calculated. The model is generated by executing a CPU intensive micro benchmark for
each core frequency and measuring overall system power. Afterwards, the idle system
power is subtracted to get dynamic core power for each frequency. Figure [5.4] shows
an example application of the power model. It displays the energy consumption in
kilojoules for multiple executions of the same workload. Displayed energy values do
not include the static component of the CPU’s power dissipation, i.e. leakage power
Proar (see Chapterm for details). Same as in Figure @ the CPU was fixed to the

corresponding frequency for each run and the standard error was calculated over 5
154
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Figure 5.4: CPU energy consumption of workload execution for different CPU fre-
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quencies. The CPU was fixed to the chosen frequency for each execution. Error bars
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5.4 Frequency Selection Oracle

The Oracle is used to provide a baseline frequency profile which shows the highest
achievable energy savings for the benchmark workload whilst having an irritation score
of zero. It has perfect knowledge of energy consumption and lag duration caused by
each frequency at each point of an executed workload. This knowledge is collected
by exhaustively executing the benchmark workload for each available core frequency.
Lag durations and energy consumption of each lag and idle period are measured. An

offline algorithm then calculates the Oracle frequency profile:

Lag For lags the Oracle considers the most energy efficient frequency which results
in a lag duration still below the irritation threshold which was specified during

workload creation.

Idle For idle periods following each lag irritation is zero per definition (see Sec-
tion [5.2)). Hence, the Oracle chooses the least energy consuming frequency for

that period.

The following sections will explain frequency selections for lag and idle periods in

more detail.

5.4.1 Selecting a Lag Frequency

Lag begin Irritation Threshold
\ \l
| 00©o0—0—0—

Selected by Oracle t

Figure 5.5: This figure shows the timeline of a single interaction lag. Each circled
number stands for the lag ending of a specific frequency. Each lag length that stays
below the specified Irritation Threshold does not count as irritating and for each lag
length that exceeds it a penalty is applied. The Oracle selects the least energy consum-
ing frequency which is still below the threshold (circled).

Consider the interaction lag example in Figure [5.5| where each number stands for the
lag ending of a certain frequency configuration. (1) marks the ending of the fastest
frequency, (2) the ending of the second highest and so forth. To construct the Oracle

profile the most energy efficient frequency is picked for each lag that is still below the
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Figure 5.6: Pictogram showing how the Oracle algorithm selects lag frequencies for
an example of three interactions. For each lag (square red box) frequency profiles are
displayed showing lag duration (box size) and energy consumption in Joules (number
in box). Frequencies 0.30 GHz - 2.15 GHz are available on the CPU for this example.
The timeline on top marks interactions (I) and corresponding irritation thresholds (T).
The boxes on the very bottom below the dashed line indicate which frequencies were
chosen by the Oracle.

irritation threshold which was specified during workload creation. In Figure [5.5] this

would be frequency (3).

Figure [5.6] shows how the Oracle selects lag frequencies for an example of three suc-
cessive interactions. At the top of the figure a timeline is displayed where interaction
events are marked with (I) and corresponding irritation thresholds with (T). Below this
timeline, rows of frequency profiles are displayed. Each row stands for an execution of
the interaction example while the CPU was fixed to the corresponding frequency. The
6 displayed frequencies range from 0.30 GHz until 2.15 GHz. Each frequency pro-
file indicates collected execution data by showing coloured boxes. The size of a box
stands for the lag duration while the number inside the box indicates the lag’s energy
consumption in Joules. All boxes in this figure start at input times (vertical dashed line
below timeline ticks marked with 7). Their duration differs depending on frequency and
some exceed the irritation threshold (vertical dashed line below timeline ticks marked
with T') while others stay below. On the very bottom of the figure below the horizontal

dashed line, the Oracle’s frequency selection for the three lags is displayed.
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The higher the frequency for a single interaction, the shorter the corresponding box,
i.e. lag duration. Energy consumption does not scale linearly with frequency level.
This can also be observed when looking back at the power model in Figure 5.4 The
lowest frequency does not necessarily mean lowest energy consumption. As discussed
in other research, predicting the effect of DVFS decisions on performance is not a
straightforward endeavour for a realistic workload task mix (see Section[2.2.2). Having
perfect knowledge of all execution statistics, however, the Oracle can pick the least
energy consuming frequency which leads to a lag duration still below the irritation
threshold. In the presented example this results in 1.50 GHz for the first interaction,
1.73 GHz for the second and 1.50 GHz for the third. Now that lag frequencies for the
three interactions are fixed as well as corresponding lag durations, the Oracle proceeds

with frequency selection for the idle periods in between lags.

5.4.2 Selecting an Idle Frequency
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Figure 5.7: Pictogram showing how the Oracle algorithm selects idle frequencies for
an example of three interactions. For each idle period (round blue box) frequency
profiles are displayed showing idle duration (box size) and energy consumption in
Joules (number in box). Frequencies 0.30 GHz - 2.15 GHz are available on the CPU for
this example. The timeline on top marks interactions (I) and corresponding irritation
thresholds (T). The boxes on the very bottom below the dashed line indicate which
frequencies were chosen by the Oracle.
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It is necessary to first select all lag frequencies before idle frequencies can be chosen.
A lag’s execution frequency influences the lag’s duration, i.e. when it ends and the idle
period starts. The interaction replay mechanism presented in Section [4.3.2] ensures
that user input is issued at the exact same time for each benchmark execution. That
means, between multiple workload executions, the same lags always start at the same
time. Hence the following idle periods always end at the same time. The beginning
of an idle period, however, is dependent on the lag duration which again depends on
the selected lag frequency. Therefore, the Oracle needs to select a lag frequency first
to fix a start point for the following idle period. This fixes the idle period duration.
Then the Oracle can decide which idle frequency needs to be taken for lowest energy

consumption.

Figure shows how the Oracle selects idle frequencies for the same interaction ex-
ample as in the previous section. For better visibility red square boxes showing lag
statistics which were not selected by the Oracle are removed. Blue round boxes show-
ing lag statistics for idle periods are added. Now that the length of the preceding lag
is fixed for each idle period, idle begin and end are the same in each frequency profile.
The Oracle now picks the frequency from the given selection which leads to the low-
est energy consumption. As before energy does not scale linearly with frequency level.
For the given example, selected idle frequencies are 1.50 GHz for the first idle period,
1.04 GHz for the second and 0.65 GHz for the third. This concludes the frequency

selection process and the Oracle profile for the interaction example is finished.

5.4.3 Oracle Profile

Figure [5.8] shows a distribution of all interaction lag and idle frequencies selected
for the Oracle frequency profile over the complete benchmark workload generated
in Chapter 4] The medium frequencies are used most often due to their good balance
between energy savings and lag duration and therefore user irritation. For idle periods
the highest selection percentages of 22.6% and 24.4% have 0.96 GHz and 1.04 GHz.
Frequencies lower than 0.96 GHz are rarely selected for neither lag nor idle. Higher
frequencies are also rarely chosen for idle periods but more often for lags. The higher
frequencies are used less for idle periods since here the focus lies on energy savings
alone. Lags on the other hand need to consider irritation which pushes frequency dis-

tribution towards higher frequencies.
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Figure 5.8: Distribution of frequencies selected for the Oracle profile. Left hand side
bars represent the share for interaction lags, right hand side bars the share for idle
periods. Error bars show the standard error which is calculated over 5 iterations of the
workload execution.
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The Oracle generated a frequency profile which has minimal energy consumption
whilst maintaining zero user irritation. Frequency selections for each period of the
benchmark workload can now be used as a baseline to evaluate other DVFS approaches
when executing the benchmark workload. Initially, this will be performed in the next
section for the current standard DVFS techniques on Linux based mobile devices.
Later, in Chapter [6] and Chapter [7] a new DVFS algorithm will be developed which
avoids standard governor mistakes and achieves energy and irritation results close to
the Oracle.

5.5 Experimental Setup

In the following sections experiments will be conducted where energy and irritation
results of the Oracle’s workload frequency profile are evaluated against three standard
frequency governors. Other user perception based DVFS studies on mobile platforms
compare experimental results of their techniques against the same standard [[134][168§].
The industry standard techniques for DVFS are represented by three Linux frequency
governors used on modern mobile devices running Android operating systems. There
is the Ondemand governor, the Interactive governor and the Conservative governor.

Ondemand and Conservative are included in almost every modern Linux-based sys-
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tem and Interactive is the standard governor for most Android mobile devices. All
three base their DVFES strategies on the current load of each core. They ramp up the
frequency as soon as the load raises above a fixed high-threshold and lower it again
as soon as the load falls below a low-threshold. Conservative changes the load more
smoothly than Interactive and Ondemand and stays longer in intermediate steps. Inter-
active has an additional feature where it reacts directly to incoming user input events
and immediately ramps up the frequency while ignoring the load in those cases (see

Section [2.6|for more details on their functionality).

The workload used for the frequency governor experiments as well as the hardware
setup is the same as in Section In contrast to previous experiments, the workload
i1s now executed for each of the three frequency governors instead of fixed frequen-
cies. Again, in order to minimise statistical error, each execution is repeated 5 times
which leads to 15 executions of the entire workload. As before, the standard error is

calculated across all 5 workload iterations.

The frequency profiles generated by the governors and collected CPU load traces to-
gether with the power model from Section [5.3] are used to calculate the governors’
energy consumption. Additionally, the user irritation metric from Section [5.2]is used
to derive their corresponding irritation. The irritation thresholds are again set to 110%
of what the fastest frequency could achieve for each lag. Resulting energy and irritation
for each governor over the entire workload are then compared to each other as well as
to energy and irritation for the Oracle performance profile generated in Section [5.4.3]

and to all configurations with a fixed frequency from Section 4.6

5.6 Experimental Results

First, total energy consumption and irritation of the entire workload execution are com-
pared between the standard governors and the Oracle. This is followed by an analysis
of where the governors select incorrect frequencies. Lastly, fixed frequency executions

are compared to governors and Oracle.
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(b) User irritation is displayed in seconds. It is accumulated over all lag duration threshold
violations of lags in the workload. The percentage value above each bar indicates for what
fraction of total lag duration the irritation value accounts for.

Figure 5.9: User irritation and energy consumption of standard governors compared to
Oracle results. Error bars show the standard error which is calculated over 5 iterations
of the workload execution.
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5.6.1 Total Energy Consumption and Irritation

A summary of governor energy consumption and user irritation over the entire bench-
mark workload is shown in Figure[5.9] For all three governors, Figure [5.9a shows the
percentage of total energy consumption above what the Oracle frequency profile can
achieve. All three use more energy than the Oracle with the Conservative governor
being closest with 4% and Interactive and Ondemand needing about a third more with

32% and 27% respectively.

Figure [5.9b| shows the governors’ accumulated user irritation over the course of the
complete workload. The time value displayed on the irritation axis can be understood
as a total time for which the user was irritated during the execution of the workload.
The percentage above each bar shows which percentage of the total irritation lag time
for each governor that was. With the Oracle frequency profile not being irritating at
all, the Conservative governor is furthest away with a total irritation of 593 seconds.
This is 32% of the total interaction lag time of the workload. It can be interpreted
as the end user being irritated 32% of the time while waiting for the system to finish
processing his interaction. Interactive and Ondemand both have a total irritation of

roughly 10 seconds which accounts for 1% of the total interaction lag time.

In conclusion it can be said that all three governors have room for improvement. Even
though Interactive and Ondemand are doing quite well when it comes to providing
good QOE they require about a third more energy to execute the workload. Conserva-
tive needs only a little more energy than the Oracle profile but is irritating to the user

for about a third of the time.

5.6.2 Governor Frequency Compared to Oracle

Figure[5.10]shows a break down of where frequency selections by the single governors
differ from the Oracle. This is shown by using average frequencies over all user per-
ceived workload periods, i.e. all irritation lag and idle periods of the full workload. The
governor’s average frequency for each period is compared to the Oracle’s equivalent
and it is counted how often it is below, above or the same as the Oracle’s choice. A

governor’s average frequency over a workload period is indicated as follows:

All frequencies selected by the governor over the course of a single workload period,

i.e. a single interaction lag or idle period, are weighted by their duration. The sum of
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Figure 5.10: Difference of average governor frequency compared to Oracle frequency
for each perceived workload period. Left hand side bars represent the share for inter-
action lags, right hand side bars the share for idle periods.

these weighted frequencies is divided by the total duration of the workload period. The

result is rounded to the nearest available frequency on the processor’s scale.

From the bar pairs shown in the figure, the left bar represents the share for interaction
lags out of all workload periods while the right bar represents the idle period share.
It can be seen that in about 90% of the cases the Conservative governor chooses a
frequency that lies below the frequency chosen by the Oracle. 44.6% of those belong to
interaction lags which account for about the same energy consumption as idle periods
in the total workload and for all of the user irritation. This explains the results from
Figure [5.9) where the Conservative governor is much more irritating than the Oracle.
With the average frequency being below the Oracle’s the interaction lags are longer

and therefore user irritation grows.

Interactive and Ondemand show similar results. Like Conservative they stay below
the Oracle’s frequency during idle periods for 42% to 46.5% of the time. However, in
contrast to Conservative they exceed the Oracle’s frequency during lags in 25.9% and
33% of the cases. This is the reason why the Oracle profile is doing better in terms
of energy efficiency compared to those two governors. The fact that the idle period is
below the Oracle profile so often and still governors need more energy is bound to the
amount of work that needs to be done. All three governors scale frequency with the
CPU load which is close to zero for most of the idle time. For occasional load spikes at

idle time due to background processes, governors raise the frequency and lower them
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again shortly after. Most of the time, however, their selected frequency is the lowest
possible. This causes the average frequency, which is weighted by duration, to be
lower than what the Oracle picked. The Oracle having perfect knowledge of which
frequency works best for the entire period, anticipates load spikes and selects a higher

one.

5.6.2.1 Fixed Frequency Compared to the Oracle
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(b) User irritation is displayed in seconds. It is accumulated over all lag duration threshold
violations of lags in the workload. The percentage value above each bar indicates for what
fraction of total lag duration the irritation value accounts for.

Figure 5.11: User irritation and energy consumption of fixed frequency configurations
compared to Oracle results. Error bars show the standard error which is calculated
over 5 iterations of the workload execution.
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In addition to the governors, the Oracle profile is now compared to performance con-
figurations where the core was fixed to a certain frequency. Figure [5.11] shows the
corresponding results for energy and irritation. Figure shows energy consump-
tion for all available core frequencies compared to the Oracle profile. Always running
on the fastest frequency needs 45% more energy than the Oracle selection. The 8
medium frequencies are close to the Oracle’s energy consumption while 0.96 GHz to

1.27 GHz manage to use less.

Figure[5.11b| show user irritation over the course of the workload. Again, the percent-
age above each bar shows which percentage of the total irritation lag time the accu-
mulated irritation accounts for. It degrades the faster the frequency becomes while the
fastest frequency is per definition not irritating (see irritation threshold specifications
in Section [5.5). However, the fastest frequency is the only frequency to achieve an
irritation of zero. The Oracle’s frequency settings achieve a user experience that is

indistinguishable from always running at the highest frequency while using 45% less

energy.
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Figure 5.12: Scatterplot of energy and irritation metric for the workload with frequency
governors and fixed frequencies. Oracle profile and the fastest frequency both have an
irritation of zero per definition.

Figure [5.12] shows a comparison of all fixed frequency profiles, all governors and the
Oracle by plotting energy over user irritation for the whole workload. It shows that
some performance profiles reach the Oracle in terms of user irritation and some come
close or even exceed it in terms of energy consumption, but none surpasses it in both.

It 1s also noteworthy that some fixed frequencies, namely 1.57 and 1.50 GHz, are
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performing nearly as well or better than the governors. This is likely due to the nature
of the analysed workload. A longer workload with more interaction examples and

different mobile platforms can help to investigate this further.

5.7 Conclusion

In this chapter the energy saving potential of current Android frequency governors
was evaluated while considering user perception. In order to do that the benchmark
workload and interaction lag marking method from Chapter 4 was used. To quantify
QOE for a workload execution, a metric was introduced which evaluates interaction
lag data generated by setting maximum deadlines for each interaction. For the bench-
mark workload an Oracle profile was created that would use the least possible energy
whilst still being able to meet interaction deadlines without irritating the user. When
comparing the governor frequency profiles with the Oracle’s, results showed that In-
teractive and Ondemand leave room for more energy savings with up to 32% while
the Conservative governor needs on average 4% more energy than the Oracle. Con-
servative shows, however, a significantly higher user irritation. On average the user
is irritated for 32% of the time while waiting for the system to finish processing his
interaction. Interactive and Ondemand need on average 32% and 27% more energy

but are a lot closer to the Oracle in terms of irritation (on average less than 1%).

This chapter could successfully demonstrate the usefulness of the method developed
in Chapter 4| and how it can be applied to measure QOE of a DVFS approach. In the
following chapters a DVFS technique will be developed which considers interaction
lag durations as perceived by the user. It avoids frequency selection mistakes made by

the standard governors and is able to match the Oracle’s results more closely.



Chapter 6

Runtime Interaction Lag Detection

6.1 Introduction

In the previous two chapters, novel methods and tools were introduced to accomplish
the goal of improving energy efficiency of DVFS techniques for mobile workloads.
An interactive mobile workload was generated from input recordings of real users. It
was used in conjunction with a methodology to mark interaction lags and a metric to
quantify user irritation. Executing this tool chain allows benchmarking a DVFS tech-
nique in terms of QOE and energy efficiency. The feasibility of this approach was
demonstrated in the previous chapter: There, current standard frequency governors
were evaluated by comparing their selected frequency profiles against an Oracle base-
line profile with minimal energy consumption and zero user irritation. Results showed
that the governors leave room for improving energy efficiency without applying user

perceptible performance degradation.

In this and the following chapter, an improved DVFS technique is developed. By con-
sidering findings of the work so far, the new technique is designed to make frequency
decisions based on user perceived workload periods. Therefore, a crucial requirement
to implement such a technique is runtime knowledge of when the system executes a
lag and when it is idle as seen from the user’s point of view. This is because those
periods have different requirements for being handled by a QOE aware governor. Such
a governor needs to pick a high enough frequency during interaction lags to keep ir-
ritation low yet without wasting energy. During idle periods it can ignore irritation

and focus on using the most energy efficient frequency. This chapter will describe in

88
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detail how the developed governor is able to detect the boundaries between interaction
lag and idle periods as seen by the user. The QOE aware governor developed in the
next chapter will then use this information to avoid mistakes made by current standard

approaches and match the Oracle baseline more closely.

Recent studies exist that are trying to capture user interaction periods by instrumenting
the layout tree of Android applications [9] or tracking the end of all tasks or threads
triggered by an interaction [[138],[139] 152, [168]] (see Chapter [3|for details). They show,

however, limitations in the type of interactions they can handle or require extensive OS

framework instrumentations. More importantly none of them uses a systematic method
to evaluate their technique against actual screen output seen by the user. The heuristic
developed in this chapter is tested for interactions across multiple applications recorded
from real users and evaluated against the video frame markup method introduced in
Chapter [4]

6.1.1 Runtime Detection of Lag and Idle Periods

Surface
=™ xEua

Surface

Google

Frame Buffer

Surface
Flinger

Figure 6.1: Android SurfaceFlinger component combines drawable surfaces of active
applications to the final frame buffer image presented on the screen.

Detecting the start of an interaction lag can simply be performed by tracking user input
events. The real challenge lies in finding the start of an idle period, i.e. the end of a

lag. Since this boundary is defined by the user’s visual perception of the workload,
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the governor needs to have low overhead access to information on the screen output.
For the offline approach in Chapter ] a video was recorded of what the screen was
showing and its frames were analysed to identify interaction intervals. This approach,
however, is too complex and time consuming to be used at runtime. Instead, screen
refresh executions of the Android framework’s SurfaceFlinger component, CPU load

and input events are considered to get an idea of the user’s perspective.

SurfaceFlinger is a framework component responsible for producing the final screen
output image. Its functionality is displayed in Figure [6.1] This display stack compo-
nent combines drawable surfaces of all currently active applications (see Section[2.5.1]
for details). After an application finishes rendering screen content into a surface
graphic buffer, it notifies SurfaceFlinger about the new content. SurfaceFlinger then
executes a screen refresh for all currently available surface buffers. Screen refreshes,
therefore, correlate well with frame changes in a workload video as seen by the user.
The video markup method introduced in Chapter {4|identified the first video frame in a
series of still standing images as the ending of an interaction lag. The Lag End Detec-

tion Heuristic (LDH) developed in this chapter finds the corresponding screen refresh

by monitoring system statistics at lag execution time.

>
@ Lag Start @ Real Lag End 2©) Time
Screen 3 Detected Lag End
Refresh

Figure 6.2: Interaction lag from both the user’s and system’s perspective. The user’s
perspective is represented by screenshots of the device’s output and the system’s per-
spective shows SurfaceFlinger screen refreshes (green diamonds). The correlation
between those perspectives is demonstrated using two lines. Dashed red shows lag
dimensions detected by the heuristic, solid grey shows dimensions as seen by the user,
i.e. as detected by the lag marker method from ChapterF_f}
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Figure [6.2] demonstrates user and system perspective for an example interaction. It
shows SurfaceFlinger screen refreshes, visual presentation to the user and lag endings
as seen from both sides. In the upper part of the figure a chain of screenshots shows
how the user perceives the executed interaction of opening the Gallery application. The
solid grey line above the timeline marks the lag period as seen from the user’s point
of view and the dashed red line indicates the lag period as detected by the runtime
LDH. Each green diamond marks a screen refresh execution of SurfaceFlinger. In the
example, the user perceived lag ending comes first and then the screen refreshes stop
which the runtime heuristic reports as a lag end. This is the most common case for
interactions in the workload generated in this study. The causes for the offset between

detected ending and last screen refresh will be explained in Section [6.2]

The LDH accuracy evaluation presented at the end of this chapter shows that reported
lag endings can sufficiently capture the user’s perspective. The last SurfaceFlinger
screen refresh of a lag which is reported as a lag ending by the heuristic diverges from
the lag ending as seen by the user with an average error of 11.7%. It will be shown in
Chapter[7that this accuracy is sufficient for improved energy efficiency and a reduction

in user irritation.

6.1.2 Contributions

The contributions of this chapter are:

1. An analysis of runtime statistics at interaction lag times and their correlation to

visual output as seen by the user and,

2. aruntime heuristic to determine the ending of user perceived interaction lags.

6.1.3 Overview

Section [6.2] will demonstrate how system statistics and visual representation correlate
using multiple examples. Implementation details of the LDH and how it is used to
determine the lag ending during execution will be described in Section The ex-
perimental setup and metrics for an evaluation of the heuristic’s detection accuracy
are presented in Section and corresponding results are discussed in Section [6.5]

Section [6.6] will then summarise and conclude the chapter.
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6.2 Correlation between System and User Perspective

The improved governor’s LDH must be able to detect an ending for various kinds of
interaction lags. Some with a duration of only a few hundred milliseconds others with
durations of up to several seconds. It must be able to find an ending for different CPU
frequencies which show different execution statistics for the same lag. Furthermore,
the heuristic must be able to determine if system activity is still part of the current
lag or background activity of the following idle period. Also discrepancies between
the user perceived screen output and SurfaceFlinger screen refresh events need to be
considered. This section will show examples of different interaction lag scenarios in-
cluding user output and underlying system statistics to give an idea of how the statistics
used by the LDH look like.

6.2.1 Long and Short Lags

Figure[6.3]shows graphs of the system statistics used by the LDH for a longer (1.5 sec-
onds) and a shorter (0.3 second) lag. Above each graph is a series of screenshots
showing the screen output at the time of the execution. The y-axis shows a percentage
scale for CPU load. The busy time of a single CPU is measured over 10 millisecond in-
tervals and the busy to idle time ratio is displayed in the graph as a thin red line. Along
the 0.8 level of the y-axis blue dots represent input events as processed by the Linux
subsystem driver (see Section 4.3.2). Screen refresh events issued by SurfaceFlinger
are displayed as green diamonds along the 0.5 level of the y-axis. A thick grey line
marks the boundaries of the lag as seen by the user, i.e. as detected by the lag marker
methodology described in Section

The 1.5 second lag shows how a tap on the home screen shortcut of the Gallery appli-
cation is registered and how the application starts. The first cluster of input event dots
represents where the finger touches the screen and the second one shows where it is
removecﬂ A series of screen refresh clusters follows representing the screen changes
during application startup. First, the shortcut glows in blue, then a black background
fades in from the centre, the headline is changed from “Gallery” to “Albums”, a grey
square appears as a place holder for the first picture album and lastly the header image

of the album fades in. After that, the lag is over and screen refreshes stop.

'Input events are so close in succession that they might appear as one dot in the graphic.
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Figure 6.3: Visual output and system statistics of a long interaction lag of 1.5 seconds
compared to a short lag of 300 milliseconds. User perceived lag dimensions are shown
as a thick grey lines, CPU load as a thin red lines. Input events are displayed as blue
dots and screen refreshes as green diamonds.

The CPU load spikes up as soon as the screen is touched. It has a small dip where
the finger leaves the screen. Afterwards, it stays up around 100% until the application
is loaded. Around 153 seconds, where the header image of the album is fading in,
load goes down and only spikes shortly around 50% for each screen refresh. When the
lag ends, load lessens further and stays low around 10%. The CPU for the graphs in
this figure is fixed to a frequency of 1.04 GHz which is from the medium range of all
available ones on this core. In the beginning most of the components needed for the
application are loaded, which is finished around 153 seconds. Afterwards, the CPU is
busy drawing each screen refresh until the screen changes finally settle and the lag is

over. The following CPU activity is due to background tasks of the application and the
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OS.

The short 0.3 second lag displays how an option in a settings menu is ticked to activate
it. The initial finger-down-and-up input is followed by two screen refreshes: a blue
highlight appears and disappears again and a tick mark is set. CPU load spikes shortly
for each screen refresh. As for the examples, long lags usually contain multiple clusters
or bursts of SurfaceFlinger screen refreshes while short lags can have only one or two
single refreshes. The LDH must be able to handle both cases. The CPU load can
alternate quickly or stay high for larger intervals. It usually declines after the lag ends.
Finding the last burst or the last singular screen refresh in a lag and a declining load
are therefore a good indicator for a lag ending. A burst ending and declining load
can, however, also happen within a lag, especially for higher frequencies. It is also
possible that an animation during idle time directly following the lag causes more
screen refreshes which are not part of the actual lag. These cases also need to be

covered by the heuristic.

The two examples show again that the lag ending detected by the lag marker method
from Chapter [ has a slight offset to the last screen refresh. In the long lag, it is
caused by the frame comparison technique used by the lag marker method. In this
method, frames are determined to be equal by comparing their pixels. During pixel
comparison, a small colour difference is allowed to compensate for noise and video
artefacts. Minor pixel changes which are actually part of the lag can be masked by
the noise which causes the lag marker method to report a premature ending. This can
happen during screen transitions where a fading animation is used. The user, however,

is not likely to detect those differences himself.

The offset in the short lag is caused by the granularity with which the lag marker
method works. It considers lag endings only for frame boundaries which are 33.33 ms
apart for a video of 30 fps. The actual system screen refresh can therefore diverge from
the reported ending for up to that much. Again, this difference is not noticeable by the

end user.

6.2.2 Different CPU Frequencies

Figure[6.4]shows how different CPU frequencies affect the outcome of a lag execution.

Three frequencies are displayed: the lowest possible on top with 0.3 GHz and a lag
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Figure 6.4: Visual output and system statistics of the same interaction lag for three
different CPU frequencies (0.3 GHz, 1.0 GHz and 2.2 GHz). User perceived lag di-
mensions are shown as a thick grey line, CPU load as a thin red line. Input events are
displayed as blue dots and screen refreshes as green diamonds.
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runtime of 1.7 seconds, a medium frequency of 1.0 GHz in the middle with a lag
runtime of 0.8 seconds and the fastest frequency on the bottom with 2.2 GHz and a
lag runtime of 0.7 seconds. The lag itself corresponds to an interaction where the user
taps on an album in the Gallery application. First, the album is highlighted in blue
and then fades into showing its picture content. While input events stay the same,
load and screen refresh statistics differ between the three frequencies. On the fastest
frequency three screen refresh clusters and one high load spike can be seen. The three
clusters belong to the fade-in animation of the album highlight, the disappearance of
the highlight and the fade between album and picture content. Components of the
album content are loaded as soon as the highlighting process is finished. The lower
the frequency, the longer the component loading process takes and the longer the lag

duration is stretched.

After an application finishes drawing its screen content to a surface, it notifies Sur-
faceFlinger. SurfaceFlinger then refreshes the screen content by compositing visible
surfaces of all currently running applications depending on where they are located. A
synchronisation framework ensures that screen refreshes happen at the frame rate of
the display device (30 fps on the device used in this study). If the screen content does
not change between two frames, SurfaceFlinger does not issue a refresh and the dis-
play device can simply draw the same graphic buffer content as before. On the lowest
frequency the CPU cannot always handle surface rendering, final surface composi-
tion and potential additional background tasks within the time limit of a single frame
(33.33 ms for 30 fps). If the CPU is too busy, screen refreshes might be dropped and
the screen output’s frame rate “stutters” and appears unsmooth. Therefore, execution
of the same lag for lower frequencies usually has more clusters of screen refresh in-
tervals which are spread out longer than execution for higher ones. The LDH must be
able to track different amounts of screen refresh clusters in a single lag depending on

current frequency settings.

6.2.3 Idle Time Activity

Figure [6.5] shows an example of system activity between lags, i.e. during the idle pe-
riod. The two lags displayed here show the menu of the Logo Quiz application. Play
is tapped in the first lag which leads to a sub menu displaying available levels. The

first level is selected in the second lag which brings the device to a screen showing
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Figure 6.5: Visual output and system statistics for idle time period following two lags.
User perceived lag dimensions are shown as a thick grey line, CPU load as a thin red
line. Input events are displayed as blue dots and screen refreshes as green diamonds.

available logos to guess in this level. Within the idle period between the two lags are
multiple short load spikes and a longer one around 502 seconds marked with L. This
long load spike is due to a background Google Login Service trying to synchronize
content for an application using a Google account. Around 498, 511 and 513 seconds
marked with S1 to S3 are screen refresh events with corresponding load spikes during
idle time. Among them, only the screen refresh burst at S2 leads to screen changes
actually visible to the user (more details on imperceptible screen refreshes in the next
section). Here, a scroll bar fades out after the logo overview was loaded. The LDH
must be able to decide which screen refresh and load spikes belong to a lag and which

are inside an idle period.

6.2.4 Screen Refresh Inaccuracies

Although SurfaceFlinger screen refreshes are a good indicator of when the screen
changes and what the user sees, this statistic is not ideal. There are discrepancies
between screen refreshes and actually visible changes on the device’s display. It can
happen, that screen refreshes are scheduled in SurfaceFlinger which result in screen
changes that are so minor, that the human eye cannot detect them or only with great
difficulty. For the mobile user and the video frame lag detection method from Chapter[]

this looks like the screen is actually standing still. It is also possible that an application
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Figure 6.6: Visual output and system statistics showing discrepancies between screen
output visible to the user and SurfaceFlinger screen refresh events. SurfaceFlinger re-
freshes the screen without perceptible screen changes. User perceived lag dimensions
are shown as a thick grey line, CPU load as a thin red line. Input events are displayed
as blue dots and screen refreshes as green diamonds.

signals to SurfaceFlinger that a new graphic buffer is ready but it does not actually
differ from the previous one. A screen refresh follows but the screen content does not

actually change. Figure[6.6] gives two examples for this behaviour.

The upper graph shows an interaction with the Stay tourism application. This appli-
cation provides city guides or information on various tourism goals around the world.
The interaction is a tap on the top menu where the application switches from showing
favourite guides to a list of available ones. The interaction is executed on a medium
CPU frequency and is about a third of a second long. During the actual screen update

the content below the top menu rolls to the left when the next menu entry is selected.
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It happens so fast during execution that the animation is barely visible. It is shown as a
single screen refresh within the high CPU load region towards the end of the lag. How-
ever, the idle periods surrounding the lag show a high rate of repeated screen refreshes

even though no differences between successive frames are perceptible.

The lower graph again shows an interaction with the Gallery application. Here, the
picture content of an album is displayed and the back button is tapped. The picture
content fades out and the available album overview fades in. The video frame lag
detection method detects a stop in visible screen changes after 0.7 seconds, i.e. the
user perceived end of the lag. However, the SurfaceFlinger screen refreshes are being

scheduled for 1.7 seconds which is nearly three times as long.

Three different people were asked to have a look at the actual screen output for those
lags and could not see any screen changes for the times in question. Also, the video
frame detection method could not find significant pixel differences besides noise. This
kind of behaviour can result from badly written code which requests screen refreshes
from the Android framework without ensuring it is necessary. Another possibility are
pixel changes so minor, that the human eye and the video frame comparison cannot
detect them. The following section will present the LDH algorithm and explain how it

handles the cases presented above.
6.3 Lag End Detection Heuristic

The runtime heuristic to detect lag endings works with the system statistics presented
in the previous section. It monitors system events and reports the ending of the lag
currently being executed as seen from a user’s point of view. In so doing, it needs to

overcome the following challenges:

1. An ending needs to be detected by observing screen refresh clusters and CPU

load spikes for lags with various durations.

2. The load profile and screen refresh clusters of the same lag look different for

different frequencies.

3. System activity such as load spikes or screen refreshes can appear within idle
periods (e.g. scroll bar fade outs right after the lag ended, a cursor blinks, the

clock changes or a CPU-heavy background task is active).

4. Visible screen changes and system screen refreshes do not always align.
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Figure 6.7: LDH workflow: After the interactions initial input events, system statistics
are monitored to find at least one screen refresh burst (upper branch) or a singular
screen refresh (lower branch). When one of the branches was taken, LDH waits for the
CPU load to drop. As soon as the load drops and stays low the lag end is reported.

A high level workflow of the LDH is shown in Figure Detection starts after a
finger input event was observed. This is usually a finger down event followed by a
finger up event. However, the heuristic is also able to handle cases where the finger
remains on the device longer than for a quick tap, i.e. swipes or long touch events. The
heuristic aims to capture user perceived lag endings, which are tied to screen refreshes.
Therefore, after an input was detected, it monitors SurfaceFlinger activity and looks
for bursts of screen refresh events (upper branch in the figure). Such a burst is a se-
ries of screen refreshes following each other in regular time intervals. The intervals
between refreshes of a single burst depend on the currently running application and
can range between 16 ms and 500 ms. Specific expected properties of a burst such as
refresh interval length and minimum count of successive refreshes to be considered a
burst, can be configured. As soon as the ending of a burst was detected, the heuristic
waits for the CPU load to settle below a background activity threshold. A burst fol-

lowed by low load is a strong indicator for a lag ending. If the load stays up, usually
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another burst follows because the lag is still active. Short lags often only have one or
two screen refresh events which do not add up to a burst. Therefore, the heuristic also
starts looking for low CPU load if no burst was detected yet, but at least one singular

screen refresh appeared (lower branch in the figure).

Figure[6.8]shows a pseudo code algorithm of the LDH. The displayed function is called
in regular intervals while a lag is active. When the lag end was detected, it returns the
time of the last screen refresh in the lag as result (line 13). The function starts check-
ing for a lag end as soon as either the user’s input finger left the screen or touches the
screen for longer than a configurable amount (300 ms for experiments in this study).
The upper branch in Figure is represented in pseudo code by the condition in line
6: When at least one burst of screen refreshes was observed and the most recent burst
already ended, the first condition for a lag end is fulfilled. The lower branch is rep-
resented by the second condition in the same if clause in lines 7 and 8: If no screen
refresh burst has been observed yet but a minimum configurable amount of singular
screen refreshes was seen (one, for experiments in this study), a lag end is potentially
imminent. In lines 10 and 11 the final condition for a lag end is checked: When the
load since the last observed screen refresh is lower than a configurable threshold (5%
for the experiments in this study) and a configurable amount of time has passed since

then (30 ms for experiments in this study), a lag ending was found.

function detectLagEndTime () ({
/1 SR: Screen Refresh
if (fingerLeftScreen |
fingerOnScreenDuration > HOLD_EVENT_THRESHOLD) {

if ((SRBurstCount > 0 & lastSRBurstEnded) |
(SRBurstCount <= 0 &
SRCountAfterFingerDown > SHORT _LAG_MIN_SR_COUNT)) {

if (loadSinceLastSR <= LOW_LOAD THRESHOLD &
timeSinceLastSR >= LAG_END_THRESHOLD) {

return timeOfLastSR;

}
}

return null;

Figure 6.8: LDH end detection algorithm. It is invoked regularly when a lag is active
and reports the time of the last observed screen refresh when a lag end was detected.
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When the conditions for a lag ending are met, the heuristic reports it to the governor.
Waiting for the load to remain low before reporting an end usually leads to a small
offset between the last observed screen refresh and the reported end. This is necessary
to ensure that load or screen refreshes are not picking up again right after the last
seen burst ending because the lag is still continuing. To counteract this inaccuracy the
total lag duration passed on to the governor does not include the mentioned offset. It
ranges only from input until the last observed screen refresh. This helps to align more
closely with the user’s point of view. To reduce runtime overhead, the heuristic scans
execution statistic in regular sample intervals (10 ms by default). The offset caused by
this sampling distance is, however, negligible when considering that a user perceptible

frame update takes 33.33 ms at 30 fps.

The heuristic’s algorithm in this form is able to tackle most of the challenges listed
above. The only problematic lags are the ones where screen refreshes and actually vis-
ible changes do not align. Here, the heuristic can have a high detection error compared
to the lag ending as the user sees it. However, these cases are not frequent in the work-
loads collected for this study. Additionally, the resulting inaccuracy is low enough to
not affect the overall goal of energy efficiency and high QOE. A detailed evaluation of

LDH detection accuracy will be presented in the next section.

6.4 Experimental Setup

The experiments presented in this chapter serve to evaluate the detection accuracy of
the Lag End Detection Heuristic presented above. Detection results of lag periods are
compared to lag duration measurements performed by the method presented in Chap-
terd] Inaccuracies between the results of runtime heuristic and video frame method are
reported using a mean absolute percentage error metric. This metric will be described
in detail in Section[6.4.2

The benchmark workload executed for the experiments is the one generated in Chap-
ter [ It is composed of 16 datasets from different users with a length of about 10 to
15 minutes each. It has a total length of 190 minutes with 1935 user input events. Just
like for the experiments in Chapter 4] and Chapter [5} the leading and trailing interac-
tions of each dataset were omitted. They are used to activate and deactivate workload

recording and are therefore not part of the actual workload. Also, some interactions
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within the workload were omitted since the recording method presented in Chapter [
could not handle them (see detailed workload description in Section 4.4)). This leaves

1852 interactions for the analysis.

To comprehensively measure lag durations as detected by the heuristic, the workload
is executed for each available core frequency. Each execution is repeated 5 times to
reduce statistical error. The standard error is calculated across those 5 iterations. To
reduce execution time and provide a flexible development environment the workloads
are executed with a simulator. The simulator works on the data traces collected during
workload recording and is able to run all 5 iterations in approximately 2 hours on an
Intel Xeon E5-1620 processor. Compared to a real time execution on a mobile platform
of 222 hours i.e. about 9 days, this is roughly a 94x speedup. Further information

about the simulator are presented in the next section.

6.4.1 Interactive Workload Simulator

To allow a fast turn-around and easy access to runtime statistics during LDH devel-
opment, a mobile workload simulator is used. Existing simulators capable of running
a mobile workload like Qemu were not considered. Their feature set and simulation
accuracy is unnecessarily extensive for the initial steps of the heuristic development.
Instead, a new simulator was developed with the only objective of producing an inter-
action lag profile for a simulated workload. This allows simulation speedups around

100x compared to real time execution.

Based on workload statistics the simulator determines lag starts and uses the LDH to
detect the endings. Workload statistics are taken from runtime traces collected during
workload executions for the experiments in Chapters[d|and[5] Those data traces contain
timestamped information on screen refreshes, input events, if the CPU is busy or idle,
current CPU frequency and so forth. With this data, LDH functionality can be tested

for a workload. Figure[6.9|demonstrates the simulator’s workflow in more detail.

The simulator core runs the main simulation loop and regularly updates a system timer.
The timer considers workload time on a millisecond accuracy. For each run of the
update loop, the timer provides a new time stamp which is passed on to a System
Environment Manger (1). This component has access to data traces of the simulated

workload. When it receives the current time stamp, it extracts necessary data at that
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Figure 6.9: Workload simulator workflow of a single update loop. (1) A system timer
sends the current simulation time to the System Environment Manager. (2) This com-
ponent generates the current state of the system environment based on system traces
collected during workload execution on hardware. (3) Based on observed input the
core decides if a lag began and starts polling the LDH for the corresponding lag end-
ing. () When LDH detects the lag ending, the corresponding time stamp is reported
back to the core (5) which adds the final lag dimensions to an ultimately produced lag
profile.

time from loaded traces and returns the current state of the system environment to the
simulator core (2). This state contains information on which statistics collected data

traces are showing at that time.

The Simulator Core processes the information and decides if a new lag has started,
based on observed user input. While a lag is active, the core regularly polls the LDH
for whether the active lag ended yet. To make this decision, it passes the environmental
state on to the heuristic 3). When a lag end was detected, the corresponding lag end
time stamp is reported back to the Simulator Core (4). The core then ends the currently
active lag and saves simulation results in a lag profile (5). Like the lag profile gener-
ated by the video frame markup method from Chapter ] the lag profile produced by
the simulator contains information on when each lag started and when it ended. Lag
profiles of both methods can then be compared to evaluate LDH accuracy. The results

of experiments where this was done, are presented in the following sections.
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A limitation of the simulator is its inability to simulate nondeterminism caused by
background processes of the OS or other applications. Since processing resources of
foreground and background tasks are shared during execution, differences in execu-
tion statistics can appear for multiple runs of the same workload. To compensate for
this limitation, the workload generated in Chapter [ is executed on actual hardware 5
times and 5 sets of execution statistics are collected. Experiments conducted using the

simulator are always repeated for each of those 5 iterations and results are averaged.

6.4.2 Evaluation Metric
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Figure 6.10: This figure shows the error value used to evaluate LDH accuracy. ERD is
the percentage error between the real lag ending as measured by the lag marker method
in Chapter (4| and the lag ending detected by the LDH developed in this chapter.

The LDH is evaluated in terms of detection accuracy. For that purpose the error is
considered between the lag ending as detected by the video frame markup method, i.e.
as seen from a user’s point of view, and the ending as detected by LDH. It is called

error between real and detected ending (ERD) and displayed for an example lag in
Figure[6.10]

The mean absolute percentage error (MAPE) is used as a metric to calculate the actual
error value. It is computed by taking the geometric mean of the percentage errors for
a set of n lags with lag id i based on the difference between the lag duration with the

real lag ending r and the lag duration with the detected ending d. MAPE is defined as:

ri — d,' D
fi 6.1)

%iln (ERDi)) (}, iln

MAPE = e( i=1 i=1
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6.5 Experimental Results

As described in Section [6.2] the LDH must be able to find a lag ending for lags of
variable length and CPU frequency. Therefore, the complete workload is executed
once for each available CPU frequency. During execution the current frequency is fixed
for each lag and a medium frequency of 1.04 GHz is used for idle periods between lags.
Using a different idle frequency does not affect the heuristic’s accuracy since it is only

set after the lag ending was already detected.
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MAPE (red dot and percentage value) and upper and lower quartiles.

Figure 6.11: Distribution of percentage error between real lag ending and detected
ending over all available CPU frequencies. A total distribution is shown on the right.
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Figure[6.I1|shows the distribution of percentage errors between durations with real and
detected lag endings over all available CPU frequencies. The distribution of values is
indicated by violin plots for each frequency. Figure shows data points for the
entire workload executed 5 times for each available CPU frequency. The figure shows
some large outliers, especially for the lower two frequencies. A zoom in on 1.5x the
interquartile range (IQR) of the data is shown in Figure[6.11b] 5.1% of the data points
lie beyond 1.5 xIQR. The lag duration MAPE for each frequency is displayed as a
red dot and a percentage value. A box plot behind each violin plot shows MAPE and
upper and lower quartiles. On the very right, the displayed distribution of percentage
errors considers data points from all frequencies. The MAPE values shown in the
distribution figure range from 9.7% at 0.65 GHz up to 13.3% at 2.15 GHz with a total
value of 11.7%.

6.5.1 Belated Lag Detection
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Figure 6.12: Distribution of lag durations with detected lag ending normalised to lag
durations with real lag ending.

The distribution of detection error shows that the heuristic is often able to detect the
lag ending close to what the video frame annotation method reported. However, it also
fails to do so for some cases. Most of those cases where the heuristic gets it wrong,
the detected ending lies after the real ending already happened. This is depicted in
Figure[6.12] This figure shows a histogram with the distribution of lag durations with

the detected ending normalised to the corresponding lag duration with the real lag
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ending. It can be seen that more detection errors are larger than one which means
the heuristic detected the ending later than the video frame method. The usual cause
of belated end detections are screen refreshes stretching beyond the real lag ending.
For smaller errors this is due to inaccuracies of how the video frame marker method
compares frames which causes it to miss small colour differences (see Section [6.2.1].
Larger errors happen when discrepancies exist between screen refreshes and actually
visible screen changes (see Section [6.2.4). In those cases screen refreshes continue

without causing frame changes visible to the end user.

There are also a few substantially large errors, especially for the two lowest frequen-
cies. They are caused by two types of lags which prevent the heuristic from detecting a
lag ending at all. In those cases the next interaction starts before the heuristic reports an
ending. As a fail safe, the start of the next interaction is automatically set as maximum
end value for a lag. Depending on the length of the idle period following a lag, this can
lead to very large errors. The first type of lag where this happens are those which never
reach the expected interaction lag ending due to a low frequency. That means, the user
never sees the result he expects as a system response when interacting with the device.
For example, he taps on a home screen shortcut and starts up an application. The low
frequency causes a long load time and ends with the application being loaded missing
important interface elements. This can be interpreted as a bug in the application code
which is unable to handle extremely low frequencies. The second type are lags which
show a visible end to the user but continue with highly CPU intensive background
processing. Hence the heuristic, which is waiting for the load to settle after a screen
refresh burst (see Section [6.3), never finds such a spot and keeps looking until the next

interaction event is issued.

6.5.2 Early Lag Detection

Figure [6.13] shows for which percentage of total lags the ending is detected after the
real lag end happened. This value totals to 75.2% over all frequencies. It is as high as
88.2% for the lowest and goes as low as 67.2% for 1.57 GHz. In general, the heuristic
detects the lag end before the real ending more often for higher CPU frequencies. This
is due to the heuristic waiting for CPU load to settle after a screen refresh burst before
reporting a lag ending. For higher frequencies an ending can be detected even though

the real lag is not over yet. This happens when a lag consists of multiple screen refresh
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Figure 6.13: Relation of real lag ending to detected one over the complete workload
executed with the CPU being fixed to each frequency. The bars indicate when the
heuristic detects the lag ending after the real ending already happened for a given fre-
quency setting. Error bars show the standard error which is calculated over 5 iterations
of the workload execution.
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Figure 6.14: Sample workload of an early lag end detection. Low load and a pause
after a screen burst lead to a false positive ending report by the heuristic in the middle
of the lag.

bursts and all CPU work related to one burst is done before the next burst started. That
means, CPU load drops in the middle of the lag which the heuristic can interpret as an

ending.

Figure [6.14] demonstrates this type of premature ending. The lag is a tap on the At-
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tractions menu entry in the Stay application. It opens a list view with multiple city
attractions. Underlying system statistics are separated into two CPU load bursts. The
first one happens while the menu entry is highlighted and the list view fades in. The
second one happens while all list entry header pictures are being loaded and fade in one
by one (the very first entry does not have a picture). Between the two bursts CPU load
goes down to nearly zero. Also screen refresh events pause for a few milliseconds.
Now both conditions for the heuristic to report a lag ending are met so the ending
is considered detected. On a lower frequency CPU load would be higher than the
threshold marking a lag ending, and the gap between the two bursts would be bridged.
Problems of this kind can be fixed by tweaking the heuristic for higher frequencies.
For example by stretching the timespan for which the heuristic needs to observe low

load after a screen refresh burst before reporting a lag end.

6.6 Conclusion

In this chapter a heuristic was developed to capture user perceived workload periods
at runtime. By monitoring system events with a strong correlation to visual screen
output, this heuristic is able to detect the lag ending of an interaction as seen by the
user. The LDH is able to detect lag endings for all CPU frequencies with an average
error of 11.7%. It works best in the medium range of the available frequency spectrum.
Large detection errors can happen when the SurfaceFlinger screen refreshes used by
the heuristic do not lead to frame changes visible to the user. In those cases the lag
ending is detected too late. Another frequent cause of errors are periods in interaction
lags where the CPU load is nearly zero for some time due to animation timers, memory
stalls or disk I/O. Here the heuristic can report a lag ending too early. In 75.2% of
the cases the detected ending lays after the ending as seen by the user. In the next
chapter the heuristic will be used to develop a CPU frequency governor. It will be
shown that the heuristic’s detection accuracy is sufficient for the developed governor
to achieve improved energy efficiency and user irritation and that the governor is able

to compensate for potential detection errors.
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QOE Driven DVFS Algorithm

7.1 Introduction

Research experiments conducted in this thesis are driven by the claim that a DVFS
technique for interactive mobile workloads can accomplish good energy efficiency if
information is available on how fast the system responds to interactions as seen from
the user’s point of view. A methodology and metric to benchmark a representative
mobile workload in terms of QOE were developed in Chapter[d]and Chapter[5] Existing
potential for energy savings whilst maintaining high QOE was shown in Chapter [5] by
comparing frequency selections of current standard frequency governors with an all
knowing Oracle. Chapters [6] and [7] are dedicated to developing a QOE aware DVFS

technique which is able to closely match the Oracle.

In the previous chapter a lag end detection heuristic (LDH) was developed which al-
lows the desired DVES technique to subdivide an interactive workload into lag and idle
periods at runtime. The LDH will be used in this chapter to give the QOE governor
the necessary information on the user’s perspective of the workload. With that infor-
mation, the governor needs to find the frequency with optimal energy efficiency and
QOE for each lag and idle period encountered during execution. Optimising energy
and irritation for idle periods is solved in a straightforward way. Irritation is per defi-
nition zero and a hard-wired CPU frequency provides good energy efficiency for most
cases. Finding a good frequency for interaction lags, however, is more challenging. It

is achieved with machine learning.

111
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Figure 7.1: High level concept of QOE aware DVFS technique. At (1) the governor
detects an interaction. It predicts an optimal frequency at (2). The interaction executes
until its end is detected at (3) by the heuristic from Chapter [f] The lag’s measured
duration is reported back and used to update the frequency prediction model at (4).
Observation of multiple samples of an interaction improve frequency prediction over
time.

7.1.1 Machine Learning Driven DVFS

Finding a good frequency for an upcoming interaction lag at runtime is extremely hard
without prior knowledge of the lag’s behaviour. For specific applications it might be
possible to anticipate behaviour, but not for the general case. An often used technique
for such problems is machine learning. By observing multiple interaction samples, lag
behaviour for different frequencies can be learned. The acquired knowledge can be
used to train a model to predict runtime decisions. A static model, however, would
need constant adaptation with new training data for each new application released and

each new device published.

The approach taken in this chapter to find good frequencies for lags is based on re-
inforcement learning (RL). RL applies a trial-and-error approach to find an optimal

solution in a dynamic environment. A feedback loop provides updates on executed
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behaviour and reinforces good results to constantly adapt and improve the underlying
model (see Section [2.4] for details on RL). The approach is based on the assumption
that the same interactions or the same type of interactions appear over and over during
workload execution: For example, typing keys on an on-screen keyboard, regularly
opening the email application to manage messages, or playing a game with a given set
of controls. The idea is to learn good frequency levels for recurring interactions by

observing execution statistics of multiple samples while trying different frequencies.

Figure shows how the QOE aware governor applies the RL technique. As soon as
user input arrives, the interaction is identified (1) and a QOE model predicts an optimal
frequency for the upcoming lag. The CPU is set to this frequency (2). When the user
perceived ending is reached, LDH detects it and reports lag duration (3). The mea-
sured duration and calculated energy consumption are used to update the QOE model
and to improve frequency prediction for the next sample. By observing the results of
frequency selection for multiple interaction samples, the governor constantly adapts
prediction accuracy. This way it can find good energy efficiency while maintaining
low user irritation. The name Reinforcement Learning Governor (RLGov) will be used

in the remainder of this thesis.

Other DVFS techniques were developed using RL [174, [175]. They did, however, fo-
cus on batch workloads and not interactive ones. Li et al. [177] introduce a supervised
learning based DVFS technique for mobile workloads. They train a neural network to
predict a frequency setting on application granularity and rely on user questionnaires
to improve their QOE model. Considering the size of modern smartphone applica-
tions it is unlikely that performance settings on application granularity are sufficient to
achieve high energy efficiency. Furthermore, improving the prediction by relying on

user feedback is likely not practical in a realistic scenario (see Chapter [3|for details).

7.1.2 Identifying Interaction Events

To learn good behaviour for specific interactions, RLGov needs to identify the type
of the upcoming interaction lag ahead of time. This way multiple small QOE models
for each encountered interaction type can be maintained instead of a large complex
one for the general case. This approach reduces feature space and increases frequency
prediction efficiency. Since the research focus of this chapter is on predicting optimised

frequencies, interaction identification is done manually for conducted experiments.
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Nonetheless, techniques for automatic identification are discussed in Section

For 66% of the interaction types used in this study RLGov settles on a frequency pre-
diction with a good tradeoff between energy and irritation after a training period of
14 execution samples. This statistic goes up to nearly 90% after 60 samples. After
the initial learning phase the governor achieves an energy consumption of 9.6% above
the Oracle profile calculated in Chapter [5] This consumption is up to 22% lower than
the energy consumption of current standard Android frequency governors. The user is

irritated for 5.6% of the total interaction lag time of the benchmark workload.

7.1.3 Contributions

The contributions of this chapter are:

1. A runtime reinforcement learning based technique to predict the CPU frequency

with optimised energy efficiency and QOE for an upcoming interaction lag,
2. aruntime technique to identify user interactions ahead of time,
3. aruntime model to quantify user irritation caused by interaction lag, and

4. areinforcement learning based frequency governor for interactive mobile work-
loads with improved energy efficiency and QOE compared to current mobile

solutions.

7.1.4 Overview

Section will present the overall concept of the QOE aware governor. Section
will describe how interaction events can be identified ahead of time. This is followed
in Section by a description of how RLGov uses an RL approach to learn execution
behaviour of interaction lags. The reward function RLGov uses to optimise frequency
choices will be explained in Section and the frequency selection process for each
upcoming lag in Section In Section the experimental setup will be presented
to evaluate RLGov’s functionality. Experimental results are described and discussed in

Section[7.8] Lastly, Section[7.9 will summarise and conclude the chapter.
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7.2 Reinforcement Learning Governor Concept
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Figure 7.2: Concept of RLGov handling an example interaction of opening the Gallery
application: (1) Interaction identification as soon as user input is detected, 2) frequency
prediction for the upcoming lag from the corresponding model in its current training
state, (3) lag end detection as seen by the user and (4) switch to idle frequency and
updating the prediction model with collected execution sample statistics.

Figure [7.2] shows a more detailed concept of RLGov’s frequency prediction for an in-
teraction sample. A timeline of the execution goes from left to right. The screenshots
A to C above the timeline show the screen output of three distinct execution events: In-
teraction lag start A, user perceived ending of the lag B and start of the next interaction
lag C. Below the screenshots is a graph indicating which frequency is set to the CPU.
Below the timeline a flow chart shows how RLGov makes frequency predictions. The
executed interaction is a tap on the homescreen shortcut of the Gallery which leads to
the system response of starting this application. The following paragraphs will explain

frequency selection for the two user perceived workload periods.
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Lag Frequency When the system receives input at A the interaction is identified (see
Section and a corresponding id is generated. The id is passed on to the fre-
quency predictor (1). To improve prediction efficiency, the frequency predictor
maintains a model for each encountered interaction id. It picks the associated
one and makes a frequency prediction based on previous observations (2). The
prediction aims for the frequency which results in the lowest tradeoff between
energy consumption and user irritation for the encountered lag among all avail-
able frequencies. The tradeoff is calculated by multiplying measured energy and
irritation. The prediction accuracy is improved by observing execution results
following an interaction and using them to update the prediction model. The
CPU is set to the predicted frequency and lag execution starts. During execution
RLGov monitors system statistics and uses the heuristic developed in Chapter [0]
to find the ending of the interaction lag as seen by the user. When the heuristic
reports the lag end, the observed statistics are recorded (3). The observed execu-
tion statistics are considered a sample of the encountered interaction type using
the predicted frequency. Based on the sampled statistics, energy consumption
and user irritation of the executed lag are calculated as well as their resulting
tradeoff. These values are used to update the prediction model associated with
the id generated for the interaction (4). Thereby, the frequency governor is able
to optimise its behaviour for previously unseen interactions and adapt to changes
in behaviour of known ones.

Idle Frequency As was discussed in in Section the CPU frequency of the user
perceived idle period between B and C does not affect QOE. Here, the frequency
governor can optimise for energy alone. Since during most of the idle period the
CPU is not busy, a CPU frequency with the best overall energy consumption for
idle periods is hard-wired. This approach is a good solution for most idle times.
Always choosing the most energy efficient idle period would require additional
effort. Knowledge would be needed of how long the idle period is going to be
and which potential background work would occur. Among other features, this
knowledge depends on a human component, e.g. the user’s decision to continue
interacting with the device. It would require a different approach and is there-
fore left for future work. It will be shown in the experimental section that using
a hard-wired frequency leads to an energy consumption of 13.4% above the Or-
acle’s output. This is up to 29.2% lower than what current standard frequency

governors use on Android.
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The two main features energy and irritation used to drive prediction need to be de-
termined efficiently and accurately at runtime. Energy is calculated by using a CPU
power model as was done for the video markup method. The offline irritation metric
from Section [5.2] was adapted for online application in RLGov since a comprehensive
knowledge of execution data can no longer be assumed at runtime. It generates a value
for user irritation based on various runtime statistics. The lag end is detected by LDH
which considers the correlation of execution statistics to the visual output of the sys-
tem. Among those statistics are CPU load and screen refresh calls by the Android
framework module SurfaceFlinger. The following sections will firstly describe how
interactions can be identified ahead of time to maintain a prediction model for each.
Secondly, the functionality of RLGov’s components will be explained in detail which

is eventually followed by an evaluation of its feasibility.

7.3 Identifying Interaction Events

This section will introduce the concept of different interaction types and discuss tech-
niques to identify user interactions at the start of a lag. This way RLGov is able to
maintain small and efficient prediction models for individual interactions instead of a

complex one for the general case.

7.3.1 Identifying Interactions

The goal of identifying interaction events is to be able to distinguish ahead of time
between different interaction lags with different execution behaviour. The entry point
of the executed system response following a user interaction is the input handler func-
tion of the current foreground application. This function is responsible for handling
the received user input. In this thesis, only touchscreen input is considered. Different
handler functions are tied to different UI elements and actions such as buttons, text
input fields, focus changes or game control input. Each application has its own layout
tree specifying the positions and dimensions for each UI component. The ideas behind
identification methods proposed in other research are based on instrumenting the men-
tioned application or OS components responsible for handling an interaction. Appli-
cation or OS instrumentation can then supply an interaction identifier calculated from

the program counter of the corresponding handler method, the name of the handler’s
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Figure 7.3: Input event handler chain for an interaction example. Identifiers of compo-
nents participating in handling the given input can potentially be used to generate an
interaction id.

class or the name of the element in the layout tree. The actual elements responsible for
handling an interaction depend on touch coordinates and typeﬂ of the input and on the

currently visible screen of the foreground application.

Figure [7.3] demonstrates this identification concept for an input example. The left
side shows a screenshot of the current state of an Android mobile device. A finger
indicates where the input event happens. The input confirms a dialogue which asks to
delete a conversation in the messaging application. The centre of the figure shows the
corresponding chain of framework and UI elements involved in handling the input. At
its start is the application itself. It is followed by the UI screen showing the Confirm
Delete dialogue. The screen element receiving the input is the delete button which is
tied to an underlying onClick handler method. Identifiers of all participating elements
such as class names, method names or string identifiers can potentially be used to

identify the interaction ahead of lag execution time.

Actual implementations can be found in a publication of Song et al. [168]. They
capture user perceived SRT periods for Android workloads by using Dalvik virtual

machine instrumentation. Each user input in Android is processed by the underlying

Types are for example tap, long touch, swipe, pinch, etc.
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framework and passed on to the foreground application. An input interface used in the
framework provides different handler methods to handle different input types such as
onClick(), onSwipe(), onLongClick() and so forth. These methods are instrumented to
track interactions. Another implementation is presented by Zhu et al. [|[152]. They track
interactions in the Android web browser. For that purpose the web browser sources are
instrumented to monitor its internal interaction event queue. Each event in that queue is
tied to a corresponding handler which is used to identify interactions. QoEDoctor 9]
is a tool to monitor SRT durations in interactive workloads. It uses an instrumenta-
tion of application layout trees to identify interactions. Further information on these

publications can be found in the related work in Chapter 3]

7.3.2 Interaction Class and Instance

A Gallerystart  [] Image Open

. Album Open ‘ Back To Album Content

Interactions

Figure 7.4: Workload sample showing multiple interactions with corresponding inter-
action identifiers, which are represented as geometrical forms. When interactions are
similar it can happen that they are associated with the same id, like Image Open.

Figure[7.4]is showing an example of successive interactions where different inputs are
provided which lead to different interaction events. On the bottom is a timeline show-
ing generated interaction ids represented by different geometrical forms and colours.
All occurring interactions are listed below the timeline. Screenshots above the timeline
show the screen output belonging to each executed input and a finger marks the spot
where the input happened. Six input events occur in the displayed workload snippet.
The first event is a tap on the Gallery shortcut on the home screen, which opens the
Gallery application. The next event opens a picture album in the Gallery. Then, a pic-
ture is selected and the back button is pressed to return to the album content. Finally,

a different picture is selected and the back button is pressed once more. Even though
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there are six input events only four interaction identifiers are listed on the bottom:

Gallery Start, Album Open, Image Open and Back To Album Content.

It is possible that the handler chain is the same for different interactions. For ex-
ample, clicking on two different images is handled by the same handler method and
corresponding UI elements are not distinguishable. Depending on the instrumenta-
tion method, the two interactions can receive the same identifier for the given case.
It is, however, likely that interactions which are handled by the same handler method
exhibit the same execution behaviour. If so, RLGov’s learning method would not be
negatively affected. In fact, learning the corresponding behaviour would happen faster
since more samples are provided to the governor. However, if two interactions with
different execution behaviour end up with the same identifier, RLGov would have dif-
ficulties optimising frequency since inconsistent sample data would be provided. In
the worst case the frequency determined best by the governor would be suboptimal for
both types of behaviour profiles. An example for bad interaction type classification

and how RLGov handles this case is presented in Section[7.6.4]
The terminology used in the remainder of this chapter will be as follows:

Interaction Class represents a group of specific interactions which are given the same

identifier.

Interaction Instance is an actual occurrence of an interaction from a certain interac-

tion class during workload execution.

The presented technique can be used to allow RLGov to identify upcoming interaction
lags ahead of time based on the given input and screen state of the running applica-
tion. In so doing, RLGov can keep multiple small prediction models, one for each en-
countered interaction class. This reduces feature space and complexity and increases
prediction efficiency. Presented identification approaches do not require application

developers to modify or reveal their code.

7.4 Learning Good Frequency Choices

To optimise the CPU frequency for lags of a single interaction class, RLGov uses a
reinforcement learning (RL) based approach. An RL learning problem is broken down

into multiple situations where the RL algorithm needs to make a decision on which
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action to take. The algorithm learns good behaviour by observing the results following
its action. Observed results are condensed into a single number called a reward. The
higher the reward, the better the executed action. For the given problem, decision mak-
ing situations are the beginnings of lags. Behaviour choices are selecting an available
CPU frequency. The observed results are energy efficiency and user irritation mea-
sured over the lag period. They are condensed into a single tradeoff by multiplying
both parameters. A minimum tradeoff maximises the reward and is therefore RLGov’s

learning goal.

7.4.1 Slot Machine Analogy
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Figure 7.5: Frequency prediction models depicted as slot machines. Frequency selec-
tions are indicated by different levers. Selecting a frequency yields a reward of energy
and irritation tradeoff after lag execution. This reward is used to improve the frequency
selection of the corresponding model.

In the given workload, frequency selections for single lags are independent of each
other. Selecting a certain frequency for the first lag, does not influence which frequency
needs to be selected for the second one and so forth. This simplified case of an RL
problem is called a Multi-Armed Bandit Problem (see Section [2.4] for details on RL).
Its name comes from the colloquial term “one-armed bandit” used for slot machines in

casinos. An often used analogy describes a single slot machine with multiple levers.
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Each play allows pulling a single lever and the reward is the amount of money won.
Each lever has a different payout rate and the goal is to maximise earnings by learning

which lever works best.

For better understanding, an application of this analogy to the frequency selection
problem is depicted in Figure As an example the interaction classes from the
earlier Figure are considered. RLGov learns good behaviour for each interaction
class independently. Therefore, in the figure, each class is represented by its own slot
machine. Each machine has four levers indicating four frequency choiceﬂ Pulling a
certain lever, i.e. selecting a frequency for an upcoming lag, yields the two execution
statistics energy consumption and user irritation. In the example, an interaction in-
stance of opening an album in the Gallery is encountered and the frequency 0.65 GHz
is selected. Resulting energy and irritation are combined to a tradeoff as a reward
value for that slot machine. It is used to optimise the selection process for the next
encounter of an instance of the same interaction class. How the reward is calculated

from collected statistics is explained in the next section.

7.5 Reward Function

Each RL algorithm uses a reward function to calculate a reward value from observed
results. RLGov’s reward function is displayed in Figure for a single interaction
class behaviour model. After a specific frequency was selected for an upcoming lag,
execution statistics are collected in the background until the lag end is reached. The
execution statistics, aka. the lag sample, is passed on to the reward function to calcu-
late a corresponding tradeoff. The most important parameters of a lag sample are lag
duration as reported by the LDH (see Chapter [0 and the total time the CPU was busy

during execution.

A runtime irritation model is used to calculate user irritation. It uses the reported lag
duration and SurfaceFlinger screen refreshes observed during lag execution. Energy is
calculated from CPU busy time and the frequency selected for the lag. A power model
of the target platform’s CPU is used to accomplish this. More details on the energy and

irritation model are presented in the following sections. Energy and irriation are even-

ZFor simplicity only four interaction classes and four frequencies are displayed. In this study’s
experiments several hundred interaction classes are considered and the used CPU supports 14 frequency
settings.
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Figure 7.6: RLGov’s reward function considers observation statistics sampled during
lag execution to calculate a corresponding tradeoff. Lag duration and SurfaceFlinger
screen refreshes are used to calculate user irritation and CPU busy time and selected
frequency to calculate energy consumption. Energy and irritation are multiplied to
calculate a tradeoff. The smaller the tradeoff, the better.

tually combined to obtain the corresponding tradeoff. How this tradeoff is calculated
can be configured in RLGov. Different mobile system vendors may have different
requirements on how energy savings and user irritation should be balanced. For the
experiments conducted in this chapter, the following expression is used to calculated

tradeoff T from energy E and irritation /:
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T=ExI? (7.1)

In the tradeoff equation, irritation is squared for the following reason: While sampling
different frequencies for an interaction class and calculating corresponding tradeoffs
it can happen that tradeoffs of two different frequencies are close to each other even
though the frequency values are not. For example, a high energy consumption but low
user irritation can lead to a very similar tradeoff as a low energy consumption and a
high user irritation. In this case the design decision was taken that RLGov should favour
the frequency with the lower irritation value. Higher irritation is instantly noticed by
mobile phone users while higher energy consumption reflects in shorter battery life

which drains slowly over time.

For each frequency choice of an interaction behaviour model a tradeoff history is main-
tained. The most recent value including the sampled statistics are added to that history.
History contents are considered when making frequency decisions for future encoun-

ters of interaction lags belonging to the same interaction class.

7.5.1 Power Model

Snapdragon
Power Model

mmmmgd  ENErgy

Figure 7.7: Snapdragon Power Model: Power level determined by frequency over time
gives energy consumption.

The power model used by RLGov to calculate energy consumption is the same as used
previously for the experiments in Chapter [5] It was generated by executing CPU in-
tensive micro benchmarks for available core frequencies on the target platform. Idle
system power was subtracted from the result to get dynamic core power. When a lag
is executed for a certain frequency, RLGov records for how long the CPU was busy.

Busy time multiplied by corresponding power level results in energy consumption (see



Chapter 7. QOE Driven DVFS Algorithm 125

Figure [7.7). The governor is designed in such a way that the power model can be eas-
ily swapped for a more sophisticated version. If the hardware provides the necessary

sensors, energy could also be measured directly.

7.5.2 Irritation Model

Sampled lag duration is given to an irritation model to calculate a value for user irrita-
tion. This value is used by RLGov to get an indication of how high or low the user’s
QOE is depending on the duration of the lag for the given frequency configuration.
The irritation model maps elapsed time to a corresponding irritation value by using a

Gompertz shaped function graph. The Gompertz function is defined as:

y(1) =ae " (7.2)

In this formula, a is the asymptote y values are growing towards. b and c¢ are positive
numbers where b sets the displacement along the x-axis and c sets the growth rate. e is

the exponential function.

Irritation

® ©  1ome

Figure 7.8: Runtime irritation model using the Gompertz function shape. Elapsed lag
time is translated to an irritation value. Initial slow grow during Phase (&) is followed
by a rapid irritation increase in Phase (8) and runs out towards a maximum in Phase (©).
When SurfaceFlinger screen refreshes during execution are considered as reduction of
irritation, the graph moves along the positive time axis ((1) to (2)).

The corresponding graph is shown in Figure and indicated by a solid line marked

with number (1). It is split into three phases: During Phase (&) the irritation value grows
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slowly, then changes to a rapid growth in Phase (B) and finally runs out slowly again
in an asymptotic manner towards a maximum saturation in Phase (©). This particular
graph shape was taken because it resembles the actual user irritation growth for the
kind of interaction lags considered in this study. When the user interacts with the
device there is a short time of about 50 to 200 ms where he is not able to perceive
any delay at all. This is followed by a similarly long period where he accepts a delay
depending on the interaction being executed [11} 12]. Those two time spans make up
Phase (») in the model where the irritation grows slowly. After this initial period the
user’s irritation grows rapidly the longer the system needs to process an interaction lag
as shown in Phase (8). Finally, irritation saturates at an upper cap in Phase (©). This
saturation is based on the assumption that the user realised that the interaction takes

particularly long to be processed and is willing to accept it.

Next to mapping the elapsed time using the Gompertz function, the influence of the
screen refresh rate on the irritation growth is considered as additional factor. A widely
used technique in the field of interface design and human computer interaction [12]]
is to give the user something to look at while the system is busy processing his re-
quest. This way the user feels that the system is not stuck and is still working to do
the job requested. It also serves as a distraction during the waiting time to further re-
duce irritation growth. Examples can be a loading bar or loading animation, screen
transitions, changing pictures or messages, and so forth. To account for this effect, the
lag duration given to the irritation model is reduced by a configurable amount for each
encountered screen refresh during lag execution. This behaviour results in shifting the
Gompertz graph in the positive direction on the time axis. The more screen refreshes
are observed in a lag, the larger the shift. Figure[7.8]indicates this shift by displaying a

second dashed line marked with number (2).

function updatelrritationTime () {
timeSinceLastScreenRefresh += elapsedTime;
if (screenRefreshObservedSinceLastUpdate) {
compensatedIrritationTime +=
timeSincelLastScreenRefresh * IRRITATION_SCREEN_REFRESH_BONUS

timeSincelLastScreenRefresh = 0;

Figure 7.9: Pseudo code algorithm to calculate lag irritation. Lag duration is compen-
sated for screen refreshes encountered at lag execution time. Once the lag is over, the
compensated time is passed to a Gompertz graph irritation model to calculate irritation.
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The algorithm to calculate user irritation is displayed as pseudo code in Figure
The function updatelrritationTime is regularly called while a lag is being executed.
Elapsed time in micro seconds since the last update is accumulated until the next
screen refresh is encountered or the lag is over. When a screen refresh is encoun-
tered, the accumulated time so far is multiplied by the factor IRRITATION_SCREEN _
REFRESH_BONUS. For the experiments used in this study, this factor is set to 0.95
which leads to a reduction of accumulated time. At the end of the lag, the compensated
irritation time including the time accumulated since the last screen refresh is passed to

the Gompertz graph irritation model and a user irritation value is returned.

Measuring and modelling user irritation is a highly complex and extensive research
field by itself and large bodies of work exist that look at this topic. The model pro-
posed above is considered to give a good approximation of irritation behaviour for the
lags considered in this thesis because it reflects the major findings of HCI studies on the
topic of system response time (see Chapter[2.3.1). They are an initial timespan of no to
very slow irritation growth because users are unable to perceive a duration difference,
the observation that longer lags mostly lead to growing irritation and the acceptance
or resignation of a long response time at a certain point. To further increase accuracy,
extensions are possible, such as an interaction lag variance factor between different in-
teraction instances of the same class could be added. The higher the variance between
two interactions of the same type the higher the irritation. Also a classification of event
types as proposed by Shneiderman [|12]] or Seow [13]] could help to increase accuracy:
The user would, for example, expect a shorter delay from light weight events such as
key presses on the on-screen keyboard or taking a picture with the camera. Therefore,
his irritation would grow a lot faster than it would for more complex events such as
application startups or saving an image. Since this is, however, not the main focus of
this work, suggested extensions to the model proposed above are left for future work.
Like the power model, the irritation model can easily be reconfigured or swapped for

an alternative.

7.6 Frequency Selection Policy

A major challenge when solving each RL problem is finding a good balance between
exploration and exploitation. The algorithm needs to decide whether to optimise im-

mediate reward by exploiting gathered knowledge from previous observations or to
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explore less ideal choices to optimise future rewards. RLGov uses two phases to tackle
this challenge for each interaction class. During an initial Exploration Phase, the fre-
quency space is explored for the corresponding interaction whilst making sure the im-
mediate reward does not stay low for too long. Once, the underlying model is trained to
a certain degree, RLGov changes to an Exploitation Phase. Now frequencies yielding
high rewards are selected. Only occasionally less promising options are explored fur-
ther to account for potential behaviour changes of the interaction (more on behaviour
change in Section [7.6.2). This section will give more detail on the selection process
and will eventually show how RLGov settles on an optimised frequency after an initial

Exploration Phase.

7.6.1 Calculating a Selection Weight

Frequency selection is based on sampled execution statistics gathered from previous
observations. After each execution of a lag, sampled statistics and corresponding trade-
off are saved in a history. Each frequency of each interaction class has its own history

entries. History contents are then used to learn from past behaviour.

Figure shows the selection process for a single interaction class example. At firsta
selection weight is assigned to each frequency available for selection (1). The selection

weight is based on the following three parameters:

Average Tradeoff The tradeoffs of all previous lag executions with the corresponding

frequency are averaged.

Sample History Size The selection weight considers how often a certain frequency

has already been sampled for a given interaction class.

Sample History Trust Sample history trust indicates the accuracy of the calculated
average tradeoff. It depends on the 95% confidence interval of the mean CPU
busy time and the length of the sample history. The more samples that have
been observed for this frequency and the smaller their confidence interval the
higher the Trust factor. CPU busy time’s confidence interval is chosen over lag
duration since busy time scales almost linearly with CPU frequency. Animation
timers and screen refresh intervals can lead to a minimum lag duration, which
stops scaling with higher frequencies (see Chapter ). Busy time, however, is

unaffected by this problem.
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Figure 7.10: Frequency selection process for an upcoming interaction lag. (1) Selec-
tion weights of all available frequencies are calculated (2) depending on the frequency
selection phase of the model. (3) Weights are translated to probability space and a
(@) frequency selection is made by considering a random number between 0 and 100%.
Frequencies with a higher selection probability are more likely to be chosen for the
upcoming lag, their selection is, however, not guaranteed.
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Depending on the current selection phase of the interaction class’ behaviour model,

those three parameters are combined differently to calculate the selection weight (2).

Exploration In the Exploration Phase the governor tries to get as good a picture as
possible of the interaction class’ behaviour. At the same time it still tries to
maintain an acceptable user experience and energy consumption during lag ex-
ecution. The selection weight of a single frequency is calculated by dividing
corresponding trust by average tradeoff and history size. High trust and low
tradeoff increase the selection weight of high tradeoff frequencies, while the his-
tory size adds additional weight to frequencies with fewer samples. This way
RLGov carefully explores the frequency space whilst occasionally selecting fre-

quencies which yield a high reward.

Exploitation In the Exploitation Phase the governor reduces exploration and puts a
heavier weight on exploiting its collected knowledge. Therefore, the history size
is not applied when calculating the selection weight. Here, trust is divided by
tradeoff. In addition, the final selection weights of all frequencies are scaled with
a polynomial function to increase selection probability for frequencies yielding

high rewards even more.

After selection weights have been calculated, their values are translated into a proba-
bility space (3) so they add up to 100%. Based on the resulting probabilities, a final fre-
quency choice is made by choosing a random number between 0 and 100% (4). Higher
selection probabilities are more likely to be chosen as lag frequency, this is, however,
not guaranteed. This selection policy causes an initial noisy period for instances of
a single interaction class. Here, suboptimal frequency settings can be chosen. Once
prediction accuracy exceeds a predefined threshold, the governor starts to settle on a
frequency selection with minimal energy consumption and user irritation, i.e. minimal
tradeoff. Now only sporadic samples of suboptimal selections are taken to account for
behaviour changes. The next section will give more information on behaviour changes
of interactions. The threshold configuration for the experiments conducted in this study

is specified in Section (/.7
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7.6.2 Accounting for Behaviour Changes

By training a separate behaviour model for each newly encountered interaction class,
RLGov is able to learn good frequency selections for unseen problems. This way it can
keep up with new applications. It can also happen that an already known interaction
class changes its behaviour and thereby the frequency choice with the lowest tradeoff.
For example, an interaction starts a list search. Over time the list grows longer and the
search algorithm needs more time to process it. This will lead to a constant increase in
lag duration. With growing execution complexity the frequency with minimal tradeoff
might change to a higher one to keep lag duration short and user irritation low. In this
example behaviour changes slowly over time. Another example can be found when
looking at application updates. An interaction lag requiring a high frequency could be
updated by developers so it is suddenly able to execute sufficiently fast with a much

lower one.

RLGov uses two mechanisms to handle behaviour change. Firstly, each history can be
filled with samples up to a maximum amount (20 in the experiments for this study). As
soon as a history is full and a new sample is added for the corresponding frequency, the
oldest sample is discarded to make room for the new one. A sample history holding
only the most recent entries allows RLGov to adapt behaviour. The second mechanism
is due to the random sampling happening even if the Exploitation Phase is active for
a model. RLGov will still occasionally keep looking at suboptimal selections to catch
potential changes in application behaviour. Alternative approaches are certainly pos-
sible, such as flushing models for application updates or when encountering extreme

differences. Exploring these possibilities is, however, left for future work.

7.6.3 Considering Missing Samples

In the Exploration Phase an additional technique is applied to avoid too frequent sam-
pling of suboptimal frequencies. This technique estimates a reward, i.e. tradeoff, for
yet unsampled frequencies. This allows RLGov to consider them for frequency selec-
tion without having actual execution data. The first time an interaction instance of an
unknown interaction class is encountered, a default frequency is chosen (1.04 GHz for
the experiments conducted in this study). For every future occurrence of interaction

events (of the same class), execution statistics of the default frequency are scaled to get
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an estimate for unsampled ones. The parameters that need to be scaled to calculate a
selection weight and probability are tradeoff and trust. In the Exploitation Phase usu-
ally at least one sample for all frequencies is present and scaling is no longer required.

The following section will explain the scaling process in more detail.

7.6.3.1 Scaled Tradeoff

Figure shows details of the scaling process for the Album-Open interaction. The
corresponding behaviour model is in an example training state where all frequencies
have been sampled except 1.50 GHz. To scale the default frequency’s tradeoff, a scale
factor is needed. This scale factor is calculated by considering the history entries
of all frequencies sampled so far. Default tradeoff is not scaled directly, instead the
default frequencies average CPU busy time and lag duration are scaled. Using those
parameters, the missing tradeoff value is then calculated the regular way. The scale
factor between default frequency and missing frequency is interpolated using scale

factors between the default and all other frequencies.

In detail: In a first step (1) a scale factor between the default frequency’s average CPU
busy time and the average busy times of each other frequency is calculated. The default
frequency (1.04 GHz) is chosen as the baseline because it definitely has at least one
sample entry. For sampled frequencies the average CPU busy time is divided by the
average default frequency busy time. For unsampled frequencies, such as 1.50 GHz
in the example, no average busy time is available yet. Therefore, the values of the
frequencies (in GHz) are divided. Here the default frequency’s value is divided by the

unsampled frequency’s value.

Once a busy time scale factor for each frequency is calculated, polynomial regression
is used to interpolate the final scale factor (2). A quadratic curve is fitted to the gen-
erated scale factors. The intention is to smooth out inaccuracies from using frequency
GHz value scale factors for unsampled frequencies by compensating with CPU busy
time scale factors of neighbouring sampled ones. The final scale factor is taken from
the fitted curve and used to scale the average tradeoff from the default frequency (3).
Specifically, average CPU busy time and average lag duration of the baseline are scaled
with the determined factor and the results are used to calculate energy consumption and

irritation and eventually the scaled Tradeoff (see Section [7.5]).

The algorithm to calculate scaled tradeoff for an unsampled frequency is shown in
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Figure 7.11: Process to scale tradeoff and trust for an unsampled frequency using
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regression over scale factors of sampled frequencies. Scaled trust is calculated by
blurring the trust of neighbouring sampled frequencies.
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function scaleTradeoff(defaultFreqStats , unsampledFreq) ({
freqScaleX = list ()
freqScaleY = list ()
for each available frequency f {
frequencyStatistics = getFreqStats (f)

freqScaleX . append (f)
if (frequencyStatistics .wasSampled()) {
freqScaleY . append(
frequencyStatistics . mean_busytime /
defaultFreqStats.mean_busytime)
} else {
freqScaleY .append(defaultFreqStats . frequency / f)

}

}
freqScaleModel = fitQuadraticCurve (freqScaleX , freqScaleY)
return freqScaleModel. predictScaleFactor (unsampledFreq)

Figure 7.12: An interpolated scale tradeoff factor is calculated by fitting a polynomial
model to scale factors of sampled and unsampled frequencies.

pseudo code in Figure In line 4, a loop iterates over all available frequencies
and calculates scale factors which are used to train the regression model in line 16. A
quadratic curve is fitted to calculated x and y values. x values are the corresponding
frequencies while y values are calculated scale factors. Using the fitted curve, an in-
terpolated scale factor is returned for the unsampled frequency in line 17. Within the
loop frequency busy time is divided by default frequency busy time, if the frequency

was already sampled. If not, the GHz frequency values are divided.

Figure [7.13] shows an example of a scale factor curve for an actual experiment. The
corresponding interaction class has been sampled 20 times and 9 out of the 14 frequen-
cies have been seen. The missing frequencies are 0.42, 0.65, 0.88, 0.96 and 1.96 GHz.
Each point stands for a calculated scale factor either by using CPU busy time for sam-
pled profiles (circle) or frequency values for missing ones (triangle). The dashed line
shows the fitted curve for the given data points. The ribbon around it indicates its 99%
confidence interval. The solid line shows actually observed results for scale factors
after several hundred samples of corresponding interaction instances were executed
and all frequencies have been observed multiple times. For most missing frequencies,
the scale factor interpolation curve corrects the estimated value in the right direction.

Hence, this method is useful when estimating a tradeoff for unknown frequencies.
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Figure 7.13: A frequency scale factor model for an example interaction. Each dot
represents a calculated scale factor for sampled frequencies, each triangle a scale factor
for an unsampled ones. The dashed line shows the fitted estimation curve and the
solid line shows real observed values after all frequencies have been sampled to a high
degree.

7.6.3.2 Scaled Trust

function calcScaleTrust(unsampledFreq) ({
trustFactor = 0;

for each available frequency f {
frequencyStatistics = getFreqStats (f)
if (frequencyStatistics .wasSampled ()) {

freqDistance = absolute_value(f — unsampledFreq);
trustFactor +=
(frequencyStatistics . trustFactor x NEIGHBOURING_TRUST_SCALE)
/ (NEIGHBOURING_TRUST DECREASE FACTOR = freqDist);

}

return trustFactor;

Figure 7.14: A trust factor for an unsampled frequency is calculated by considering
partial trust values of neighbouring frequencies.

Since selection probability is generated by considering tradeoff and trust, the later
parameter needs to be scaled for the missing frequency too. This process is depicted
on the right of Figure (). Understandably, the trust for a scaled frequency cannot

be high. The scale factor to calculate tradeoff is generated by considering execution
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statistics of neighbouring frequencies that have already been sampled. Therefore, the
better known the neighbouring frequencies are and the higher their trust, the higher the
scaled trust of the missing one. Each trust value of a sampled frequency is multiplied
by a decay factor depending on its distance to the missing frequency. The results
are added up and equate to the final scaled trust (6). Now all statistics are present
for the missing frequency to be included in the selection probability calculation. The
following section will show examples for how described techniques help RLGov to

settle on a frequency with low energy and irritation.

Figure shows a pseudo code algorithm for calculating the scaled trust of an as-yet
unsampled frequency. A for loop iterates over all sampled frequencies and calculates
a distance value between the current sampled frequency and the unsampled one in line
8. The trust factor is accumulated by considering trust from each other sampled fre-
quency. Inline 9 - 11 the partial trust for the current frequency of the loop is calculated.
The trust factor of the current sampled frequency is weighted (0.25 in the experiments
for this chapter) and divided by the trust decrease over frequency distance. The fur-
ther the frequencies are apart, the less trustworthy their previously conducted scaled

tradeoff.

7.6.4 Frequency Settling

Figure shows frequency prediction results for a range of example interaction
classes from the workload used in this study. The selected frequency is shown for
each sample of an instance of the corresponding interaction class over the course of

the workload execution:

Class A Interaction A shows a clear difference between Exploration Phase and Ex-
ploitation Phase. The phase switch happens after 66 samples. Around that time
the frequency settles at 1.5 GHz.

Class B Exploration Phase of interaction B is over after 39 samples, however, during
the Exploitation Phase the selection still alternates among frequencies between
2.15 and 1.5 GHz before it settles at 1.96 GHz. This is due to noise in the data
where more data samples keep increasing the model’s accuracy during Exploita-

tion Phase.

Class C Exploration of interaction C ends after 21 samples but the frequency never
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Figure 7.15: Selected frequencies for multiple instance samples of example interaction
classes. Class A and B settle clearly on a single frequency. Class C settles on a range
of frequencies with similar tradeoffs and Class D never clearly settles at all.

seems to clearly settle on a single one. It keeps alternating in the frequency
range between 1.57 GHz and 1.19 GHz. This is due to frequency tradeoff values
being close together even after many samples have been observed. This results in
probability values being similarly high within the range of alternating frequen-
cies. An additional third selection phase could improve this behaviour where the
lowest tradeoff frequency is forced to be taken after a second model accuracy

threshold has been reached.

Class D Even though the Exploration Phase of interaction D is complete after 32
samples, and selected frequencies shift towards the upper half of the frequency
spectrum, a settling never happens. In this case the cause is due to the same
interaction identifier being assigned to interaction events with two or more dif-
ferent execution behaviours (see Section [7.3)). To solve this a modified way of

identifying interaction events needs to be applied.
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The frequency selection algorithm presented in this section allows RLGov to train be-
haviour models for encountered interaction classes. During exploration the governor
tries to keep the user experience and energy consumption on an acceptable level by
focusing on exploring frequencies considered best so far. Additionally, the tradeoff
for unsampled frequencies is estimated by scaling sampled frequency statistics. Once
the frequency space is searched to a certain degree RLGov switches to the Exploitation
Phase and heavily weights frequencies yielding a low tradeoff. Now, for most inter-
action classes the selected frequency settles on a single one or within a small range

where tradeoff values are close together.

7.7 Experimental Setup

In the following sections the results of a series of experiments will be presented. RL-
Gov was executed and evaluated for the benchmark workload generated in Chapter 4]
Evaluation focus is on the overall energy consumption and user irritation compared to
three standard frequency governors which are currently used on most Android mobile
devices. Namely, those are the Conservative, Interactive and Ondemand governors.
Additionally, the results will be put in the context of the baseline frequency profile

generated in Chapter [5|by showing how close RLGov’s results are to the Oracle’s.

The workload executed in this study is the same as the one used for the experiment in
the previous three chapters. It is composed of 16 datasets from different users with a
length of about 10 to 15 minutes each. It has a total length of 190 minutes with 1935
user input events, i.e. interaction instances. As in previous experiments, the leading and
trailing interaction instances of each dataset were omitted. They are used to activate
and deactivate workload recording and are therefore not part of the actual workload.
Also, some interactions within the workload were omitted since the recording method
presented in Chapter [] could not handle them (see detailed workload description in

Section4.4). This leaves 1852 interaction instances for the analysis.

The irritation model’s Gompertz function parameters chosen for the experiments con-
ducted in this study are roughly: a = 150, b = 5 and ¢ = 0.83. They cause irritation
to settle on a maximum after about 10 seconds. The tradeoff is calculated from energy

and irritation using: T = E x I”.

The experiments conducted here focus on analysing RLGov’s functionality rather than
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Figure 7.16: Distribution of interaction class encountered across the complete work-
load. The x-axis shows how often a class was encountered while the y-axis shows how
many classes appeared with that encounter rate.

analysing how well interaction instances can be identified at runtime. Therefore, in-
teraction ids were given to the single interaction events in the workload manually con-
sidering the mechanics described in Section In total 307 interaction classes were
identified.

Figure shows the distribution of interaction classes in the workload. The x-axis
indicates how often an interaction class is encountered and the y-axis shows a count
of interaction classes. For example, 132 interaction classes are encountered once, 5
classes 17 times and a single class 311 times. The interaction classes appearing a
single time within the workload make up 43% of all classes. That means that a single
interaction instance of those classes is executed during the workload. Among them
are opening the article options in the Pulse news application, creating a new contact
in the phone book or opening the city map in the Stay application. This number is
particularly high due to the somewhat artificial setting in which the workloads were
generated (see Section [d.4). Users were asked to exercise a foreign phone for a block
of 10 minutes in contrast to using their own in the way the would during their daily

routines.

However, in a more realistic setting there would also be interaction classes which the
mobile device user only executes one or two times. This can happen, for example,
when the user did not like an application and removed it right away. As described

in Section RLGov chooses a medium frequency by default for unseen interaction
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classes which mostly produces acceptable results in terms of user irritation and energy
consumption. For lags which appear more often so that the user cares about optimal
performance, RLGov has the chance to learn from multiple instances and optimise its
behaviour after a warmup phase. Examples are interaction classes with many instances
in the workload such as typing a key on the on-screen keyboard or opening a picture

in the gallery.

For future work RLGov could be evaluated on user devices while they go about their
daily routines. This will produce longer workloads with more interactions. However,
for the initial development performed in this study the recorded workloads are much
better suited due to quick turnarounds between developing mechanics and evaluating
them for a relatively short workload. To get a better picture of how RLGov handles
frequent interactions, the entire recorded workload is executed multiple times during
the experiments. Over the course of all executions the same interaction class models
are maintained and updated. This way all interaction classes occur multiple times and

RLGov’s learning algorithm can be evaluated over a larger data set.

For a single benchmark run, the workload is chained together 200 times while main-
taining the same interaction class models. The chained workload will be called the
extended workload. 1t has a length of about 633 hours or 26 days pure interaction time.
Considering a mobile phone usage time of 174 minutes over a 24 hour period [[179], the
extended workload represents 218 days of phone usage. To get statistically sound data
and calculate error margins, execution of the extended workload is repeated 5 times.
The standard error is calculated across those 5 iterations and displayed as error bars on
graphs. To reduce execution time and provide a flexible development environment the
workload is executed in a simulator. For that purpose the interactive workload simula-
tor used in Chapter [6]is extended with the RLGov algorithm. Specifics are described in
the next section. It is able to run all 5 iterations in about 27 hours or about a day on an
Intel Xeon E5-1620 processor. Compared to real time execution on a mobile platform

of 3167 hours or about 131 days, this is roughly a 118 x speedup.

7.7.1 Simulator RLGov Extension

The mobile workload simulator used to evaluated the lag end detection heuristic in the
previous chapter (see Section [6.4.1) is extended with a frequency predictor. With that

it is able to simulate the frequency selection process for a given interactive workload
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generated in Chapter [] with speedups around 100x. The workflow of the extended
version is depicted in Figure
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Figure 7.17: (1) The simulator core requests the environmental state for the current
time and CPU frequency. (2) The System Environment Manger picks the correct data
trace and returns it. (3) When a lag start is detected, a corresponding interaction id is
passed to the frequency predictor which predicts a lag frequency. (4) While the lag is
active LDH is polled for the lag end. (5) As soon as it is detected, the measured lag
duration is forwarded to the Frequency Predictor and used together with the Irritation
and Power model to update the interaction classes’ QOE model. () The CPU is set
to idle period frequency. At the end simulation statistics on lags, selected frequencies
and energy and irritation data are reported.

As done before, the simulator executes a timer which updates the simulation time
with millisecond accuracy. At the start of each simulation loop, the current state of
the system environment is requested from the System Environment Manager. The
Simulation Core now does not only provide a timestamp but also the currently active
CPU frequency (1). The environment manager preloads workload system traces for all
available CPU frequencies and can provide the corresponding system state at that time
for the given frequency (2). A system state contains information on whether the CPU

is currently busy or idle, if a screen refresh has happened and so forth.

As soon as the beginning of a lag was noted by observing user input, the Frequency

Predictor is notified and a corresponding interaction id is provided (3). It predicts a
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good CPU frequency for the lag based on the current training state of the interac-
tion classes’” QOE model. The LDH is now polled regularly for the end of the active
lag (). Once it is discovered, the measured lag duration is passed on to the Frequency
Predictor (5). With that lag ending and other necessary lag execution statistics (see
Section energy and user irritation are calculated using the internal models. The
resulting tradeoff is used to update the corresponding QOE model and the frequency
prediction accuracy is adapted. Afterwards, the CPU is fixed to the default idle fre-
quency until the beginning of the next lag is detected. Eventually, log files for a lag

profile, a frequency profile and energy and irritation statistics are generated.

7.8 Experimental Results

This section will present results from experiments conducted with the user perception
based learning governor developed in this chapter. It will show an evaluation of fre-
quency predictions in the first part and overall energy consumption and user irritation

in the second.

7.8.1 Frequency Prediction Results

RLGov goes through an initial Exploration Phase when a new interaction class is en-
countered. During that phase semi-random frequency samples are taken to explore lag
behaviour across the frequency spectrum. RLGov tries to keep suboptimal frequency
settings as infrequent as possible and to quickly find the best fitting one. Since multiple
instances of the complete workload are chained together while maintaining the same
behaviour models, RLGov’s optimisations can be evaluated for all interaction classes

in the workload.

7.8.1.1 Frequency Space Exploration

Figure shows how RLGov explores the frequency space for interaction classes
appearing in the workload. The complete frequency space consists of 14 different fre-
quency points ranging from 0.3 GHz up to 2.15 GHz. Those are the possible frequency
settings of the Snapdragon 800 processor used for workload recording in Chapter

The entire frequency space of a single interaction class is searched as soon as each of
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Figure 7.18: Mean frequency space exploration level of all interaction classes over
class samples during workload execution.

the 14 frequencies was sampled at least once for that class. On the y-axis is a mean
of the frequency space exploration level over all interaction classes in the workload.
The x-axis shows how often an interaction class was sampled by RLGov. The ribbon
around the graph shows the standard error calculated over all interaction classes within

the 5 execution iterations of the extended workload.

The mean level of frequency space exploration has a standard deviation of zero after
each interaction class has been sampled 192 times. That means at this point the entire
frequency space of each interaction class in the workload has been sampled. The
largest part of interaction classes, however, has been completely sampled much sooner.
The minimum amount of samples needed to to search the whole frequency space of a
single class would be 14 samples, since this is the number of available frequencies.
After each class has been sampled at least 14 times, on average 70% of all available
frequencies have been observed for each class. This value grows to 97% after 60

samples.

In Section it is described that RLGov semi-randomly samples the frequency space
for a single interaction class to learn its behaviour. This is done in two different phases:
In the initial Exploration Phase RLGov puts a slight weight on unsampled frequencies.
In the Exploitation Phase a heavy weight is put on the frequency with the best energy
and irritation tradeoff. The change between the two phases happens for each interaction

class separately and is done as soon as the frequency space exploration level of the class
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goes above a threshold. In the experiments conducted in this study, this threshold is
set to 100% to make sure the entire frequency space is covered. Even though RLGov
searches the whole frequency space it tries to keep the amount of suboptimal samples
low. This is why the frequency space is not completely searched for all classes within
the minimum possible time of 14 samples. Knowing the whole space is, however, not
necessary to find good frequencies for interaction lags. The next section will show
that in many cases, the minimum tradeoff frequency for an interaction class was found

before the entire frequency space was sampled.

7.8.1.2 Best Tradeoff Frequency
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Figure 7.19: The y-axis shows percentage of interaction classes for which RLGov has
identified the lowest tradeoff frequency. X-axis shows how often an interaction class
has been sampled.

Figure shows after how many samples RLGov identified the lowest tradeoff fre-
quency for all interaction classes in the workload. Again, the x-axis lists interaction
class samples over the course of the workload. The y-axis reports the percentage of
interaction classes for which the lowest tradeoff frequency was found. A ribbon is
used to show the standard error over all interaction classes within the 5 executions of

the extended workload. However, the error is small and therefore barely visible.

Using its internal power and irritation models, RLGov is able to identify the frequency
for each interaction class which shows the lowest tradeoff. However, this is not neces-

sarily the frequency identified in the Oracle study as the optimal frequency for the lag.
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As described in Section[5.4]the Oracle frequency profile is calculated for each interac-
tion lag, e.g. interaction instance, in the workload. However, RLGov is optimising the

frequency for each interaction class which can comprise multiple interaction instances

(see Section [7.3).

Lowest Tradeoff Found Metric The graph in Figure uses a metric to indicate
after how many samples of a single interaction class RLGov could identify its
lowest tradeoff frequency. This metric applies a sliding window calculation over
all samples of a single class. For each sample executed of a class its corre-
sponding behaviour model is searched for the current frequency with the lowest
average tradeoff, namely the current lowest tradeoff frequency. If an interac-
tion class’ current lowest tradeoff frequency has a coefficient of variation below
10% over a window of 20 samples, the lowest overall tradeoff frequency for that
class is considered to be found. The window has a length of 20 since this is the

maximum length of a frequency’s sample history (see Section [/.6.2)).

The solid line in the figure shows the results for a workload execution using the LDH
described in Chapter [6] The dashed line shows the result for an execution where RL-
Gov has perfect knowledge of the real lag ending as measured with the video markup
method from Chapter ] The difference between them is only a few percent at most.
These results show that RLGov is able to compensate for most of the detection errors
made by LDH (see Section [6.5]). Overdue lag end detection for very low frequencies
is compensated because very low frequencies usually do not have good tradeoff val-
ues even if lag end detection would be perfect for those cases. When the detected
end lies after the real lag, which is the case for most lags, the resulting user irritation
is not affected. As was discussed in Section [4.2] when the user perceives a lag end-
ing he does not care about performance during the following idle phase. Keeping the
lag frequency active for longer than necessary, therefore, only affects the energy con-
sumption. However, the resulting surplus on energy consumption is rather low when
the detection delay is not too long because the idle period is usually low on CPU in-
tensive work. The only detection errors which have a noticeable negative impact are
highly premature end detections. They lead to much shorter lag durations than in re-
ality and drastically reduce resulting lag energy consumption and user irritation. The

resulting tradeoff is therefore good and would be favoured.

After sampling each class 14 times, RLGov was able to find the lowest tradeoff fre-

quency for 66% of them. This value grows to 89% after sampling each class 60 times.
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After 200 workload iterations, RLGov was able to identify the lowest tradeoff fre-
quency for 93% of all interaction classes. This value is reached after 90 samples of
each class and remains on that height. The graph never fully reaches 100% because of
noise between interaction instance of the same class. A larger data sample can help to
further investigate this behaviour. These results show, that RLGov is able to find the
frequency with the lowest energy and irritation tradeoff for most interaction classes
after an initial sampling period. They also show that LDH lag end predictions are

accurate enough to achieve good results.

7.8.2 Overall Energy and Irritation Results
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Figure 7.20: This graph shows total energy consumption and user irritation develop-
ment over the course of the extended workload. The y-axes of both graphs show energy
percent above Oracle results and the total percentage of lag time the user is irritated.
The x-axes show how often a single workload was executed. They sum to the 200 it-
erations of the extended workload. A vertical line marks where most of the interaction
classes settled on a lowest frequency.

Figure [7.20] shows how total energy consumption and total user irritation develop over
the course of the 200 workload executions of the extended workload (see Section[7.7).
A single workload iteration consists of an execution of each of the 16 recorded datasets.
The generated interaction class models are maintained over the course of all workload

iterations and are continuously updated with sample data. The ribbons around the
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graphs show the standard error calculated over 5 executions of the entire extended
workload. As in Figure the solid line shows results of RLGov using the LDH
while the dashed line uses perfect knowledge of real lag endings. The top graph shows
by what percentage RLGov’s total energy consumption exceeds the Oracle’s frequency
profile from Chapter [5] The bottom graph shows the total percentage of time the user

is irritated during interaction lag execution.

Per definition the Oracle’s approach has a user irritation of zero. The same user irrita-
tion metric as for the experiments in Chapter [5is used for the evaluation of RLGov’s
results. The irritation for each interaction instance in the workload (independent of its
corresponding class) is based on the execution results of the fastest possible frequency.
For the fastest frequency, the irritation is zero. If a different frequency exceeds the
lag duration the fastest frequency could achieve including a small additional margin,
the overflow time is considered as user irritation value for that lag (see Section
for details). The irritation metric is calculated offline after RLGov finished workload

execution and lag durations are known.

The total energy consumption begins close to the Oracle’s and quickly grows up to
approximately 10% above it, where it settles. RLGov using perfect knowledge of lag
endings achieves slightly better results than RLGov using the heuristic. The differ-
ence is approximately 3%. Total irritation starts of around 20% and settles at ap-
proximately 6% after about 60 workload iterations. Again the governor version using
perfect knowledge of lag endings is only approximately 2% better. The vertical lines
in Figure labelled with “settled” mark the workload iteration at which point most
interaction classes have settled on a lowest frequency. To summarise these results, av-
erage energy consumption and user irritation over all workload iterations following the

60-iteration mark are considered in the next graphs.

Figure shows a comparison of RLGov’s energy results after most interaction
classes settled on a minimum tradeoff frequency. They are compared to the three
standard governors also considered in Chapter[5] The energy consumption is displayed
in percent above what the Oracle’s frequency profile could achieve. Next to total,
energy consumption results are shown for lag and idle periods alone. Again, RLGov
was executed twice: once using the LDH (RLGovLDH) and once using perfect lag end
knowledge (RLGovP).

None of the governors reach the energy consumption of the Oracle’s frequency pro-
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Figure 7.21: These graphs shows a comparison of the energy consumption and user
irritation for all three standard governors and RLGov after it settled for most of the
interaction classes in the workload.
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Figure 7.22: This figure shows energy consumption and user irritation for all standard
governors and RLGov using the LDH (RLGovLDH) and perfect lag end knowledge
(RLGovP). Energy and irritation results are displayed in relation to the Oracle results.
The Oracle lies at the origin of the graph.

file. Closest is Conservative with 3.6% followed by RLGov with 9.6%. Using perfect
lag ending knowledge RLGov manages to get 1.5% closer to the Oracle. Interactive
and Ondemand need 31.6% and 27% more energy. For all five governor runs the en-
ergy difference to the Oracle’s profile is highest during idle time. During lag time
Conservative achieves with -0.7% even slightly better results than the Oracle. This is,

however, done by trading in a significant amount of user irritation as will be shown in
Figure

In Figure the governors’ accumulated user irritation over the course of a single
workload execution is shown. The time value displayed on the y-axis can be under-
stood as a total time for which the user was irritated during the execution of the work-
load. The percentage above each bar shows which percentage of the total irritation lag
time for each governor that was. RLGov’s user irritation is with 5.6% slightly higher
than Interactive and Ondemand with each about 1%. It is, however still far below Con-
servative with 32%. RLGov using perfect lag end knowledge is only 1.2% better than
RLGov using the LDH. This shows that the LDH’s detection error compared to the real

lag endings does not have a major impact on the final result.

Figure[/.22|shows all governors for a combination of both energy consumption in per-
cent above the Oracle and the percentage of time the user is irritated during lags. RL-

Gov is able to outperform Interactive and Ondemand in terms of energy consumption.
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It is able to save up to 22% energy compared to the two governors. Conservative still
needs 6% less energy than RLGov, it is, however, much more irritating to the user. The
QOE metric shows that RLGov’s user irritation during lag execution is 26.5% better
than Conservative and only 5.6% above the all knowing Oracle. Several optimisation

strategies can be applied to make RLGov match the Oracle closer:

1. Frequency selections are optimised for interaction classes and not single interac-
tion instances as performed by the Oracle. The noise of single instances belong-
ing to the same class can cause the lowest tradeoff frequency to shift with each
sample. This is especially true if instances have been put in the same class which
don’t show the same behaviour. An improved instance identification method can

help to fix this problem.

2. The Oracle optimises frequencies for user perceived idle periods while RLGov

always chooses the same.

3. The runtime irritation model used by RLGov deviates from the offline metric
used to evaluate final results. Improving the online model to better match the

offline QOE metric can help RLGov to better learn frequency behaviour.

4. A longer workload containing more actual samples of interaction instances can
give a better picture of training results. The method presented in Chapter [ can

be used to generate them.

5. Even though differences in results between the LDH and RLGov using perfect

lag end knowledge were small, an improved heuristic can be beneficial.

7.9 Conclusion

In this chapter a runtime solution was developed to improve DVFS energy efficiency
for interactive mobile workloads whilst providing a good QOE to the end user. By
using a heuristic to distinguish between interaction lag and idle periods, the imple-
mented governor is able to consider the user’s point of view. A reinforcement learning
based approach helps RLGov to learn interaction lag behaviour for different frequency
settings and allows it to find lag frequencies with low energy consumption and user
irritation for up 93% of the evaluated cases. In so doing, it could successfully exploit

the energy saving potential identified in Chapter [5 and closely match an all knowing
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Oracle study. Overall, RLGov was able to achieve improved results compared to the
current standard frequency governors on Android mobile devices. It was able to beat
Interactive and Ondemand in terms of energy consumption and Conservative in terms
of user irritation. Inaccuracies while detecting the lag ending were causing only min-
imal differences compared to using perfect knowledge of the lag ending as perceived

by the user.



Chapter 8

Conclusions

8.1 Introduction

The research goal of this thesis was to improve the energy efficiency of current DVFS
algorithms for interactive mobile workloads. Presented methods and experiments were
motivated by the observation that current DVFS techniques work well for batch work-
loads but leave room for improving energy consumption when it comes to interactivity.
To provide satisfying response times to user interactions, current governors waste en-
ergy by setting higher performance levels than necessary. Additionally, they raise the
CPU clock speed when the user is imperceptible or indifferent to performance changes.
Based on these observations, it is claimed that information on how the end user per-
ceives workload performance can be exploited to improve DVFS energy efficiency
whilst maintaining high QOE. Such information helps to learn how frequency settings
affect user perceived performance, which will eventually allow finding optimal set-

tings.

The following Section [8.2] will summarise the methods, tools and experimental results
that were presented in this thesis to find supporting evidence for the initial research
claim. The summary is followed by a critical analysis of conducted research in Sec-

tion [8.3]and a description of future work in Section [8.4]

152
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8.2 Summary

This thesis presented four studies on how to improve DVFS energy efficiency using
information on user perceived performance levels. The first described a methodology
to benchmark QOE for an interactive mobile workload. No current mobile benchmark
suite offers an easy-to-use way of quantifying QOE. Hence, this initial step was nec-
essary to provide a method of identifying energy saving potential unused by existing
DVES techniques and to evaluate future DVFS improvements. The second study pre-
sented how an Oracle frequency profile for the benchmark workload was generated
which serves as an energy and QOE baseline. Experiments comparing current mobile
frequency governors to this baseline successfully revealed unused energy saving po-
tential. The last two studies focused on optimising DVFS energy consumption. First, a
runtime heuristic is developed to capture information on user perceived workload pe-
riods. A reinforcement learning based frequency governor then used this information
to find improved frequency settings compared to standard approaches. The following

sections will present more details on each study.

8.2.1 QOE Benchmarking Method

Initially, Chapter [] described the development of a method to benchmark QOE for
an interactive mobile workload. This method considers the user’s point of view by
analysing videos of screen output during workload executions. In those videos start and
end frames of interactions are marked. The start frame indicates when the user provides
input and the end frame marks when the user feels that the system has now finished
processing the input. Those two frames allow measuring the duration of so called
interaction lags for a workload execution with a given system configuration. With this
method markups of different executions of the same workload can be compared to
understand how different system configurations affect user perceived performance. By
capturing interactions from real users, 16 mobile usage scenarios with a total length of
190 minutes were recorded. Together with the lag marking method, these recordings
comprise an interactive benchmark for mobile systems to evaluate QOE. It can be used
by researchers and industry alike to optimise their systems. Additionally, the presented
method allows others to generate additional workload scenarios to extend or specialise

the benchmark.
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8.2.2 Oracle Limit Study

Chapter [5] presented how the QOE benchmark was used to create a baseline frequency
profile which achieves maximum energy savings without perceptible performance im-
pact. Initially, the chapter introduced a user irritation metric which gives an overall
score to a workload execution by considering interaction lag markups. It sets execu-
tion deadlines for each interaction and quantifies deadline violations with an irritation
penalty. The accumulated penalty of all lags in a workload indicates overall user ir-
ritation with the workload execution. In a second step, an Oracle algorithm used a
comprehensive set of execution statistics for each available CPU frequency level to
create the most energy efficiency and least irritating frequency profile for the bench-
mark. Lastly, this chapter described how the Oracle frequency profile was used to
evaluate current standard frequency governors on mobile systems. It analysed their
performance in terms of energy efficiency and user irritation. Frequency choices made
by the Ondemand, Interactive and Conservative governor were compared to the Or-
acle baseline. Experimental results showed that Interactive and Ondemand achieve
low user irritation but need on average 32% and 27% more energy than the Oracle.
Conservative needs on average only 4% more energy but is irritating for as much as
32% of the time while the user is waiting for the system to respond to his input. This
study could successfully provide evidence to support the motivational observations of
how governors waste energy. It showed that there is potential to improve DVFES energy

efficiency when considering the user’s perspective.

8.2.3 Capturing the User’s Point of View at Runtime

Until now the user’s perspective was considered by evaluating video recordings of
workload executions offline. To implement an improved DVES governor which makes
use of information on the user’s perspective, a feasible online method was needed. A
third study in Chapter [6|analysed system statistics of interaction lag executions to find
correlations to lag dimensions as determined by video markups. Screen refresh exe-
cutions of the Android display subsystem component SurfaceFlinger were determined
to be a good runtime indicator for the user’s point of view. Together with input data
and CPU load, a heuristic was developed which can capture interaction lag dimensions
as seen by the user. This heuristic is able to catch the last screen refresh in a lag, i.e.

the user perceived lag ending, with an average error of 11.7%. As results of the final
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study showed, the heuristic is accurate enough to improve energy efficiency compared

to standard governors whilst providing good QOE to the end user.

8.2.4 Perception Aware DVFS Governor

The final study of this thesis in Chapter [/| presented an improved DVFS governor.
It makes use of the lag end detection heuristic to identify workload periods as per-
ceived by the end user. Based on this information the governor decides when to switch
frequency settings. It optimises the balance between energy consumption and user irri-
tation for interaction lags by using a reinforcement learning approach. In so doing, it is
able to learn good behaviour for previously unseen interactions and to adapt to poten-
tial changes of known ones. The QOE benchmark and the Oracle baseline were used
to evaluate energy efficiency and irritation of the improved DVES technique. After
an initial warm-up, the user perception aware governor is able to find good frequency
settings for 93% of all evaluated interactions. It was able to beat Interactive and On-
demand in terms of energy consumption by needing up to 22% less energy, which is
9.6% more than the all knowing Oracle consumes. Also, it achieves 26.5% lower user

irritation than Conservative which comes as close as a 5.6% difference to the Oracle.

8.3 Critical Analysis

The reinforcement learning governor developed in the last chapter is able to show im-
proved energy efficiency compared to current standard approaches while maintaining
a similar QOE. It is, however, unable to exactly achieve the Oracle’s results. The fol-
lowing reasons for this shortcoming were identified and will be addressed among other

things in future work:

The benchmark workload generated in Chapter 4| covers enough interaction examples
to reveal energy saving potential by evaluating current standard frequency governors
against a baseline Oracle. Training and fine tuning the reinforcement learning gov-
ernor, however, would benefit from a longer workload with more interactions. For
the evaluation experiments in Chapter [/| the workload was executed multiple times.
This way the governor could sample each interaction class often enough to learn good

frequency settings. With a longer workload, multiple executions would not be neces-
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sary and results would be more representative. In the future, the methodology from

Chapter [ can be used to collect this additional data.

Wrong classifications of interactions into interaction classes were preventing the gov-
ernor from reaching Oracle results. If instances showing different behaviour and re-
quiring different frequencies for low energy efficiency and user irritation, are assigned
to the same class, the reinforcement learning governor is unable to optimise its fre-
quency choice. For the experiments in Chapter[7]this classification was done manually
where mistakes might have happened. An actual implementation of the interaction

classification as described in Section can help to avoid those mistakes.

The warm-up time to find good frequency settings for an interaction class can poten-
tially be reduced. Statistical results indicated that only a few samples for different
frequencies might be enough to calculate a scaling curve which is accurate enough
to predict the optimal frequency. In Section [7.6.3] scaling sample statistics were used
to estimate results for other frequencies. Estimation was, however, not yet accurate
enough for a reliable prediction. Again, a longer workload containing more samples

can help to achieve this and thereby reduce training time.

The results of Chapter [S]indicate that simply hard-wiring the CPU to a fixed frequency
of 1.57 or 1.50 GHz would achive energy and irritation results better than any tested
governor. This includes the reinforcement learning governor developed in this work
even if only by a slight margin. Given the large body of research work on DVFS it
is, however, highly unlikely that this simple solution is sufficient for modern mobile
systems. The good performance of some fixed frequencies is more likely highlighting
the limitations of the generated benchmark workload. Again an extended workload
with longer usage recordings and a larger number of interaction classes would help to

capture a more realistic picture.

Next to the improvements mentioned above other future work is planned based on the

results of this study. It will be presented in the next section.

8.4 Future Work

Future work focuses on three areas: firstly, on extending the workload generation

methodology to reduce limitations and capture more workload scenarios, secondly on
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improving RLGov and thirdly on applying developed tools and methods to heteroge-

neous processing problems. This section will briefly describe each area.

Workload Generation The workload generation method introduced in Chapter (/| is
unable to capture networking based workloads since they introduce a high level
of non determinism. Executing an interaction on a website in the morning might
lead to very different results compared to executing it in the evening. The result-
ing video frame showing the lag end can therefore be impossible to anticipate
and the lag marking method fails. A recently released interaction record and
replay tool [[130] seems to handle networking workloads well. It has, however,
no capabilities of benchmarking QOE by considering interaction lags. For the
future, an extension of the lag marker method is planned considering mechanics
of the mentioned tool. The goal is to include networking workloads and work-
loads using sensor readings such as camera, microphone or GPS. Additionally, it
is planned to improve capturing the user perspective by including workloads that
are dominated by Jank [[180] type lags. During Jank, frames are dropped when
the processor is too busy to keep up with the load. These occur mainly during
CPU intensive workloads such as games, video playback or complex web page

rendering.

RLGov RLGov’s current implementation and experiments executed on a workload
simulator serve as a proof of concept that applied techniques can be used to
reduce energy consumption. An actual implementation on mobile hardware is
planned for the future. It will be evaluated against the benchmark workloads
generated with the lag marker methodology. Additionally, a study is planned to
execute the governor over long periods of time during day to day activities of
actual users. Collected statistics of this study will contain valuable information

on how the governor performs in the field and how it can be improved further.

Heterogeneous Processing Over the last years many research studies were conducted
on heterogeneous processing technologies as a means of saving energy on mo-
bile systems. A heterogeneous processor consists of two or more cores with
different micro-architectural features such as different pipeline lengths, differ-
ent cache sizes, different frequency scales, etc. A well known example is Arm’s
big. LITTLE processor architecture [182]. The idea behind this technology is
to provide two different core types with different performance capabilities and

different energy profiles. Large and powerful cores are intended to be used for
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performance intensive tasks and small energy efficient cores for low performance
ones. It leaves the software developer with the task of implementing an intelli-
gent scheduler which is able to find a good thread to core mapping. Methodolo-
gies and tools implemented in this study to improve DVFES can help in solving
such heterogeneous scheduling problems. The QOE benchmark can evaluate
scheduling techniques and demonstrate their effect on QOE. Frequency selec-
tion algorithms introduced for RLGov can be extended to not only find a good
frequency level but also an optimal lag to core mapping. For future research it
is planned to tackle heterogeneous scheduling problems by making use of the

concepts developed in this thesis.

8.5 Final Remarks

This thesis could successfully show that information on the user’s perspective can be
used to improve energy efficiency of current DVFS techniques for interactive mobile
workloads whilst delivering sufficient performance to satisfy the end user. This was
demonstrated with the user perception aware frequency governor developed in Chap-
ter [/l The results presented in that chapter do not fully exploit the energy saving po-
tential identified by the Oracle study. They do, however, serve as a proof of concept.
Developed methods lay a foundation for further improvements of perception aware
DVFS. Additionally, they can be applied to evaluate and optimise techniques in related

areas such as heterogeneous processing.
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