
Revealing Compiler Heuristics through Automated
Discovery and Optimization

Volker Seeker†, Chris Cummins†, Murray Cole∗, Björn Franke∗, Kim Hazelwood†, Hugh Leather†
† Meta AI, USA - vseeker@meta.com, * The University of Edinburgh, UK

Abstract—Tuning compiler heuristics and parameters is well
known to improve optimization outcomes dramatically. Prior
works have tuned command line flags and a few expert identified
heuristics. However, there are an unknown number of heuristics
buried, unmarked and unexposed inside the compiler as a
consequence of decades of development without auto-tuning being
foremost in the minds of developers. Many may not even have
been considered heuristics by the developers who wrote them.
The result is that auto-tuning search and machine learning can
optimize only a tiny fraction of what could be possible if all
heuristics were available to tune. Manually discovering all of
these heuristics hidden among millions of lines of code and
exposing them to auto-tuning tools is a Herculean task that is
simply not practical. What is needed is a method of automatically
finding these heuristics to extract every last drop of potential
optimization.

In this work, we propose Heureka, a framework that auto-
matically identifies potential heuristics in the compiler that are
highly profitable optimization targets and then automatically finds
available tuning parameters for those heuristics with minimal
human involvement. Our work is based on the following key
insight: When modifying the output of a heuristic within an
acceptable value range, the calling code using that output will
still function correctly and produce semantically correct results.
Building on that, we automatically manipulate the output of
potential heuristic code in the compiler and decide using a
Differential Testing approach if we found a heuristic or not.
During output manipulation, we also explore acceptable value
ranges of the targeted code. Heuristics identified in this way can
then be tuned to optimize an objective function.

We used Heureka to search for heuristics among eight thousand
functions from the LLVM optimization passes, which is about 2%
of all available functions. We then use identified heuristics to tune
the compilation of 38 applications from the NAS and Polybench
benchmark suites. Compared to an -Ozbaseline we reduce binary
sizes by up to 11.6% considering single heuristics only and up
to 19.5% when stacking the effects of multiple identified tuning
targets and applying a random search with minimal search effort.
Generalizing from existing analysis results, Heureka needs, on
average, a little under an hour on a single machine to identify
relevant heuristic targets for a previously unseen application.

Index Terms—Search Methodologies, Compiler Optimization,
Differential Testing

I. INTRODUCTION

Modern compilers offer many configuration parameters to
fine-tune the optimization of targeted application binaries. De-
fault configuration settings, however, do not generalize well [1],
and finding the best configuration for specific application targets
is an open research problem. Iterative compilation [2]–[4]
attempts to automatically tune compiler pass parameters and
orderings to achieve high execution speed and small binary sizes
when targeting individual applications. The results gained with

this method can be tremendous and are usually significantly
better than using default settings. However, iterative compilation
and other auto-tuning approaches rely on configuration options
already exposed by the compiler developer, for example, via
command line parameters. Alternatively, they need developers
to identify and parameterize relevant heuristics in the source
code by hand.

Most research on hand-picked and auto-tuned compiler
heuristics focuses on a few examples such as inlining [5]–
[7], loop unrolling [8] or vectorization [9]. There are likely
many more heuristics used in other parts of the compiler that
have been added over the years and have rarely been changed
or evaluated since. Most of them are unmarked and difficult to
identify, while some were likely not even intentionally designed
to be heuristics. As a result, many optimization heuristics
remain inaccessible to modern auto-tuning tools and, with that,
many opportunities for potential performance gains.

The LLVM compiler framework [10] has millions of lines
of code. Combing through all of them manually to identify
relevant heuristics is a very impractical task. It would require
significant manual labor while working with a moving target
as compiler developers add new functionality daily. We need a
tool that automatically finds all existing heuristics in the latest
compiler version and determines their potential for optimizing
a targeted objective. Such a tool would be of tremendous value
for application developers to optimize individual programs and
compiler developers to find high-value targets for optimizing
the compiler.

In this work, we propose Heureka, a system that au-
tomatically finds functions in the LLVM compiler source
code that encapsulate heuristics. Specifically, we target LLVM
Optimization Passes (OPT), which are at the core of optimizing
code during compilation with the LLVM toolchain. Heureka
instruments targeted compiler functions with wrapper code
that allows output values of function calls to be modified.
Using Differential Testing, Heureka then automatically probes
different output values for the instrumented function during
compilation and determines which value ranges the calling
code accepts as valid function output. If our system can find
a non-trivial value range for a function in which selected
values generate semantically correct application code and
improve an optimization objective, the function is considered
a heuristic. Otherwise, Heureka discards the function and
evaluates the next one. Our heuristic search looks for functions
relevant to reducing the size of generated binaries. The binary
size objective, however, only serves to illustrate our method.

979-8-3503-9509-9/24 © 2024 IEEE

Accepted for publication by IEEE. © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

55



Heureka is designed to allow different optimization objectives
as well, like application runtime.

We leverage binary size heuristics suggested by Heureka to
focus on two use cases:

Application Optimization We use Heureka to suggest
heuristics and corresponding value ranges relevant to reducing
the binary size of individual applications. Focusing on only
one application at a time, Heureka can automatically suggest
heuristics from thousands of candidate compiler functions that
can heavily tune the targeted application, even if they might
not be safe for others. We then use a random search to tune
the application size by selecting output values for suggested
heuristics during compilation.

Compiler Optimization Based on suggestion and tuning
results for our evaluated applications, we can identify and rank
compiler functions according to their potential for binary size
reduction. Furthermore, we can provide identified heuristics
to compiler developers who can verify their correctness, add
potentially required safety guarantees, and use our existing
instrumentation and provided value ranges to plug in their own
tuning tools with minimal effort.

With our technique, we analyzed eight thousand functions
from OPT, which is about 2% of all functions available for our
purposes in LLVM. We were able to reduce the binary size
of 38 benchmarks from the NAS and Polybench/C benchmark
suites [11], [12] by an average of 7.7% compared to an -

Oz baseline by tuning only individual heuristics. Combining
the effects of multiple heuristic suggestions using a random
search achieved additional savings as high as 19.5%. The
heuristic search for previously unseen applications was executed
automatically and needed on average a little under an hour if
executed on a single machine using pre-existing analysis results
we collected for other applications. This evaluation time is in
line with other auto-tuning approaches [13]–[16]. In addition,
we identified and manually validated a set of heuristics that
showed high binary size savings for most applications without
breaking compilation or generated binaries for any of them
during tuning.

We make the following contributions:
• A novel method to automatically identify functions en-

capsulating heuristics in the LLVM compiler and their
accepted output value ranges.

• A framework to expose those functions and automatically
search their output space to optimize the binary size of
individual application targets.

• An instrumentation compiler pass and extension library
to instrument functions in arbitrary programs1.

• A full dataset1 with the heuristics we identified for targeted
applications. Examples are discussed in Section VII.

II. HEUREKA OVERVIEW AND TERMINOLOGY

In this section, we give an overview of how Heureka identi-
fies heuristic functions and introduce the required terminology.
On a high level, Heureka walks through individual compiler

1see online repository at https://github.com/bfranke1973/Heureka.git

int maybe_heuristic(int*, Object*)
Change output → Change Semantics

Heuristic 
Image

Fig. 1. Potential heuristic function and corresponding image. All marks are
return values of the function for various test inputs. The large circle indicates
an original unmodified return value, while the crosses and ticks indicate
unacceptable and acceptable modified return values for the same original. The
space of acceptable outputs across all original values combined is called the
image of the function.

functions and uses a Differential Testing approach to explore
which value modifications are possible for function outputs
without breaking the compilation of a target application or its
generated code whilst also showing objective improvements
such as a smaller application binary. Functions satisfying those
two properties count towards our list of identified heuristics.

Function Image: A central concept of Heureka’s approach
is the function image. The image of a function is the range
of output values accepted by the function’s calling code (see
Figure 1). Any of the values within this range can be chosen
as output without changing the generated program’s semantics,
i.e. without leading to compiler or program crashes or invalid
program results. For example, if a function decides how often
to unroll a loop and returns this decision as an integer value,
then returning negative integers may invalidate the calling
code or generate invalid binaries – in this case, the function
image would be all non-negative integers. The possible output
a function can return following its current implementation does
not always fully overlap with the function image, i.e. the calling
code might accept a wider range.

Encapsulated Heuristic: Heureka aims to automatically
identify functions for which we can approximate their corre-
sponding function images and find at least one new output value
within the function’s image that improves a chosen optimization
objective. We call such a function an encapsulated heuristic
function – encapsulated because the heuristic is embodied in a
function, rather than some more arbitrary region in the code.
Identified heuristic functions and their approximated function
images are then exposed to auto-tuning tools.

Optimization Objectivev The optimization objective is the
metric we aim to improve with identified heuristics. We can, for
example, tune heuristics for program execution time, memory
footprint or generated binary size. In this study, we chose
generated binary size compared to an -Oz baseline because it
is robust, straightforward to record.

Output Channels: A function can have more than one way
to return output. We call these output channels. Each channel
can have its own function image. On a high level, an output
channel can be a function’s return value or a reference or

56



LLVMTest 
Program.c

Current 
Prior Value

.exe
Output 
Check

Compiler 
Error

Reference 
Output

Semantic 
Error

Fig. 2. Differential Testing setup to identify a fitting image template, aka. Prior,
for a targeted LLVM function. A range of test application code is compiled
using a modified compiler. During compilation, specific output values are
forced for instrumented functions as selected by the Prior currently being
evaluated. A forced output value is considered acceptable for its corresponding
function image, if the test code can be compiled successfully, the generated
test binaries execute without fail and the expected test output is produced.

pointer parameter2. In Figure 1 the function maybe_heuristic

has three high level output channels, namely the integer return
value and the integer and Object pointer parameters.

Priors: For most functions, it is impossible to know what
their image looks like from the source code alone. It is also
infeasible to test all possible output values for all possible
inputs to determine which values belong to the image and
which ones do not. Instead, we devise image templates we
call Priors which express what an image could look like in
a testable way. For example, a Prior may be that all integers
within a minimum and maximum bound are part of the image.
We use effective search strategies to test only the values we
need to confirm or discard a Prior and its parameters for a
function output channel. We can increase the confidence we
have in the validity of our accepted Priors by increasing the
number of test cases we evaluate individual output values
against. In the context of a compiler, that would mean, the
more application code we compile and verify successfully
against compiler function modifications, the more confident
we are in our accepted Priors.

Probes and Test Cases: To test if a value is part of a func-
tion’s image, we use a Differential Testing approach [17] we
call probing. Differential Testing enables automatic evaluation
of a test outcome by comparing it to the outcome an unmodified
reference version of the tested software produced. If they are
the same, the test passed. Figure 2 shows how we evaluate
a probe using Differential Testing. A single probe is tied to
a specific output modification and Prior. The Prior currently
being evaluated determines the next output modification to be
probed for a targeted function according to its search strategy.
We dynamically instrument the target function by wrapping it
with code that allows Heureka to control the function’s output.
We force the target function to return a modified value as
output for one of its output channels. This way, we emulate
a different compiler version to compare against where the
benefits of Differential Testing come into play. A range of
test application code is compiled to exercise the modified
function with the forced return value. The compilation then

2There are other ways of producing heuristic output. For example via global
variables or by IO. We do not currently consider these.

TABLE I
THIS TABLE SHOWS PRIORS USED IN THIS STUDY TO APPROXIMATE

OUTPUT CHANNEL IMAGES FOR TARGET FUNCTIONS AND THE VALUE
RANGES THEY DESCRIBE. r INDICATES THE ORIGINAL OUTPUT VALUE

WHILE min, max, θ, ϕ, α AND β ARE PRIOR PARAMETERS THAT ARE FITTED
AS ACCURATELY AS POSSIBLE DURING PRIOR EVALUATION.

Prior Range
Boolean {0, 1}
All Integers [MINint,MAXint]
All Reals [MINreal,MAXreal]
Integer / Real Range [min,max]
Integer / Real Offset [r − θ, r + ϕ]
Integer / Real Scale [r(1− α), r(1 + β)]

either succeeds and generates a program binary or fails and
crashes. If a binary was successfully produced, we execute it
and evaluate its output against a reference to determine if it
is semantically correct or not. If a valid program binary was
produced, the probed value is considered acceptable as part of
the current Prior’s image and we can try the next one. If the
generated binary is invalid or compilation fails, the Prior or
its current parameterization will be discarded. To cap runtime
and avoid endless loops, we employ a configurable timeout of
sixty seconds as the upper bound for the modified compilation
and runtime of application code.

Tuning Targets: It is possible that a function is a heuristic
but already optimally tuned. Therefore, in addition to validating
the current output for a probe, we also record our chosen
objective metric. If we can record an improvement and find
a valid Prior, we note the corresponding function and output
channel as a suggested tuning target; if not, we go to the next
function. Using the described probing process, we go through a
range of selected compiler functions and their output channels
and try to fit one or more of our available Priors.

Correctness: Heureka does not make correctness guarantees
for the generated binaries. Instead, it relies on tests and
verification provided by the application developers. More
tests reduce the probability of suggesting heuristics that
break generated binaries but do not entirely prevent them.
However, binary size is of such critical importance to many
in industry [18]–[21] that application and compiler teams,
which dedicate many person years to reducing code size, have
exhausted most of the techniques in the literature and still
need to deliver wins. For those teams, any promising leads,
even those which may require further investigation by experts,
are extremely welcome. Our technique can help application
teams to find optimizations that, while unsafe in general, are
safe for their specific application. For compiler developers, it
can find new opportunities that would be too difficult to find
without automation. We suggest enough correct heuristics to
be worth the effort and additional automated testing can reduce
invalid suggestions still further. The approach of suggesting
potentially unsafe optimizations has been used to great effect
in prior literature [22], [23].

III. PRIORS

To find tuning targets in a program, we approximate images
for all output channels of a function using Priors. In this

57



work, individual output channels of a function are independent
and can have different images. Output channels of a function
are described in detail in Section IV. For now, all we need
to know is that an output channel is bound to a primitive
type such as a 32-bit integer or a real value. This type,
depending on the architecture, describes the maximum possible
value range that can be part of the image. The actual image
might be significantly smaller down to a single allowed
value – the original value used by the function. Essentially,
a Prior describes the shape of an output image and can be
parameterized to approximate the actual value range of the
image, e.g. the image encompasses values between zero as a
lower bound and ten as an upper bound.

Priors can describe simple images such as “all 32-bit integer
values are allowed” or more complex ones such as a bounded
or scaled range around the function’s original output value.
Table I lists all Priors we use in this study. They are based on
our knowledge of how typical heuristic functions behave, but
depending on the target compiler, additional Priors can easily
be added. We support Boolean, 8, 16, 32 and 64-bit Integer
and 32 and 64-bit Real value Priors.

Typically there will be far too many candidate Priors and
Prior parameterizations to search exhaustively. We, therefore,
need efficient search strategies to determine if a Prior ap-
proximates a channel’s image correctly or not. The following
describes our approach to testing and searching for Priors, in-
cluding sharing of information between searches, and effective
ordering of searches.

Priors are selected depending on the primitive type of the
output channel. The order of Prior evaluation is depicted in
Figure 3. To determine good starting points for our Prior
evaluation, we initially compile each test program without
any output modifications to the targeted function 1⃝. This
way, we can record original output values. A targeted function
can be called multiple times during compilation of a single
program which means after this initial first step, we usually
have a large sample of original values available. Before we start
evaluation we also record a baseline optimization objective for
test programs against which we compare modified values to
determine possible improvements.

Our Priors are divided into two groups: “absolute Priors”
where the range is agnostic of the original output and simply
probes absolute values (Boolean, All and Range) and “relative
Priors” which consider the original output and probe values
relative to it (Offset and Scale). To avoid unnecessary work,
we use the initially recorded original output to decide if we
should consider absolute Priors or directly start with relative
ones 2⃝. We do this by randomly selecting a set of recorded
originals including the minimum and maximum we observed.
We probe this set against our test application code by forcing
the currently probed value as output for all executions of the
targeted compiler function. This way, we use a value that
worked for some function executions and check if it works
for all of them. If this test is successful, we can work with
absolute values and continue with the All Prior 3⃝ otherwise,
we go directly to the relative Offset and Scale Priors 5⃝.

R
elative

Record original 
output

Can we use 
absolute Priors?

All Prior

Range Prior

Offset & 
Scale Priors

Done

YES

NO

FAIL

S
U

C
C

E
S

S

A
bs

ol
ut

e

1

2

3

4
5

Fig. 3. This Figure shows how we search for fitting Priors depending on the
type of the targeted output channel.

The Boolean Prior has a very small value range which we
can test in its entirety. We simply probe both possible values
and considered it a fitting approximation of a boolean output
channel image if both values are valid. To simplify the flow
chart in Figure 3, we did not include the Boolean Prior.

For all types other than boolean, we start with the correspond-
ing All Prior 3⃝. It is a superset of all other Priors which is why
we evaluate it first if absolute values are possible. It assumes
that all integer or real values (depending on output channel
type) are part of the image and we probe a set of sample values
to validate this assumption. Among the values we test are the
numerical bounds of the corresponding type, such as MAXint

and MIN int for an integer type, as well as interesting values
like zero, plus and minus one. Additionally, we sample a
random selection of test values from the entire available value
range. The number of samples can be configured and we are
using a value of thirty in this study. We make certain that we
keep a history of probed values in between Prior evaluations
so that we don’t probe values more than once. If all of the
All Prior’s sample values are evaluated without failing test
cases, it is assumed to approximate the output channel’s image
correctly.

Should it fail, we continue with the Range Prior 4⃝ which
assumes that all integers / reals within a given interval between
min and max parameters are part of the output channel’s
image. We initialize the range search from previously observed
samples we probed so far. To do that, we take the lowest and
highest successfully probed values that do not have any failing
observations in between. We then extend the initial bounds with
a binary search strategy first towards positive values and then
towards negative values until we narrow the bounds down to
the last accepted value in the interval or the maximum possible
value in the available numerical range for the output channel’s
type. To increase our certainty in the uncovered interval, we
probe interval bounds whenever our binary search determines a
final bound as well as a set of randomly selected values within
the new interval. Should the validation fail, we re-initialize the
binary search according to validation results and execute the
search again with refined parameters. If the interval contains a
single value only, we do not consider the Prior to be successful
as it gives us no additional information to tune an output value
beyond the original one.

58



1 bound_min=0
2 initial=1
3 bound_max=INT_MAX
4 while (validation is not successful):
5 final_bound = extend_bound_until_fail_or_max(
6 bound_min, initial, bound_max

)
7 targets = generate_random_targets(
8 NUM, bound_min, final_bound)
9 validate_current_bound(targets)

10 if validation fails:
11 bound_max = targets[first failed test]
12 initial = targets[last valid test]
13 return final_bound

Fig. 4. Binary search used to fit a bound parameter for a Prior.

Lastly, we evaluate the relative Offset and Scale Priors. They
work with the original value rather than being oblivious to it.
For these Priors values forced as outputs for target functions are
relative to the original output of the target function execution.
If the channel would originally return value r, the Offset Prior’s
search strategy would try to find a lower bound θ and an upper
bound ϕ around r which could be added to the original value
and still produce an acceptable result ([r − θ, r + ϕ]). It starts
with a lower and upper bound of zero and extends first the
upper bound as high as possible using a similar binary search
as the Range Prior and then the lower bound. It stops as soon
as it finds the last working offset that can be added to original
output values. If both lower and upper bound offsets are zero,
the Prior is not considered to be successful. The Scale Prior’s
strategy scales the original value according to an α and a β
parameter. As before, it uses a binary search strategy to push
the α and β factors as far as possible ([r(1− α), r(1 + β)]).
Again, if both parameters are zero, the Scale Prior is considered
unsuccessful.

Figure 4 shows the binary search algorithm used to narrow
down a single bound of Range, Offset or Scale Prior in pseudo
code. If exemplified for the positive offset of an Integer Offset
Prior, bound_min is initialized to a minimum allowed bound
which would be zero while initial is initialized to some
initial starting value like one. bound_max is set to the numeric
maximum of the corresponding channel’s data type. In our
example, this would be a maximum positive integer value. Now,
a binary search finds the first failing probe going forward from
bound_min towards bound_max and returns it as final_bound

. If all probes are successful along the search, bound_max is
returned as final bound. To increase our certainty in the selected
positive offset, we probe a sequence of NUM validation targets in
between bound_min and the current final_bound. The number
of targets can be configured and we used a value of thirty
for our study. If any of the validation probes fail, the binary
search is re-initialized and started again. The new bound_max

is then set to the failing probe value. The last succeeding value
right before the new bound_max is used as new initial. Once
validation is successful, a final bound is returned. In practice,
this extra probing works well for us to increase confidence in
the ultimately determined interval for the Prior.

maybe_heuristic(

int16

int8 int8

int16

int8 int8

int32 int32*, Object*)

int16

int8 int8

int16

int8 int8

StructA StructB* int64

Fig. 5. This figure illustrates low level output channels for a sample function.
To save space, LLVM can combine two or more individual parameters or fields
of a struct in the actual source code into a single one in LLVM-IR. Therefore
we need to assume, that a single output channel can in fact be a combination
of multiple ones. Every node in the depicted trees indicates a potential output
value which is evaluated by our methodology.

Not all Priors are mutually exclusive and we may find none,
a single or multiple Priors that are accepted as approximation
for a function image. If no Priors are identified for any
function output channel, the function is assumed not to be
an encapsulated heuristic. The same is true if no significant
changes in the objective can be observed while determining a
fitting Prior. If we can fit a Prior but do not observe objective
improvements, we still suggest the function and its identified
Priors. In a post processing step, this information can be used
to search the approximated image more thoroughly which can
still reveal an improved objective. Also, the results indicate
that modifications within the identified Prior parameters are
safe when used for compiling tested programs even though
they don’t yield objective rewards.

IV. OUTPUT CHANNELS

To evaluate a target compiler function, we initially determine
what the possible output channels of the function could be. A
function’s output channels are the return value or parameters
that can be used to pass data back to the calling code such
as pointer and reference parameters. In Figure 5 the function
maybe_heuristic has a total of three top level output channels:
the integer return value as channel A, the integer pointer
parameter as channel B and an Object struct pointer as channel
C. This does not mean that the function actually uses all of
them for output.

Next to the obvious top level output channels, we consider
more complex cases where top level channels break down
further into lower level channels that we evaluate in addition.
The breakdown of channels for the example function is sketched
in tree form in Figure 5. Imagine a function calculating loop
unroll cost which returns a struct containing two integer values.
One indicates the cost of unrolling a loop while the other
indicates the cost of running the loop without unrolling. Based
on this cost, the loop unroll factor is calculated by the calling
code. So modifying either of those two values can affect a
binary size objective. Therefore, in the case of a struct output,
all of its member fields can be an output of a potential heuristic
and need to be evaluated. You can see this exemplified for the
Object struct pointer in the sample function. Structs in turn
can contain other structs and primitive types where the output
paths can branch further.

To modify function outputs dynamically, we use an LLVM
compiler pass to add lightweight static function instrumentation

59



to the targeted compiler. That means we use an unmodified
vanilla LLVM compiler (VLLVM) to build our LLVM compiler
target (MLLVM) we then modify and evaluate with Heureka’s
heuristic search. The Instrumenter pass modifies the LLVM
Intermediate Representation (LLVM-IR) of MLLVM’s source
code by placing wrapper code around targeted functions. On IR
level, VLLVM applies optimizations where multiple primitive
types in the original high level language code can be combined
into a single type in LLVM-IR. Therefore, if Heureka sees an
integer value with 32 bits as output, it needs to assume that it
can be a combination of two 16-bit integer values or a 16-bit
value and two 8-bit values, etc. Heureka analyses possible
combinations individually and provides fitted Priors for all, if
successful. Combinations of types can be broken down all the
way to bit level. If a heuristic manipulates bit fields, a prior
considering this level of granularity can be beneficial. We left
it at the byte level as an informal code review led us to believe
bit fields are rare in the LLVM code base.

If considering Figure 5, every node in the depicted trees that
contains a primitive type is an output channel. Therefore, the
number of output channels Heureka considers for a targeted
function can be large and complex, especially, if struct types
are involved. Heureka is flexible in the way output channels are
constructed and additional strategies can be added by developers
if required.

Considering, that we are looking for potential heuristic
functions, not all reachable channels in a tree as described
in Figure 5 would be sensible for returning heuristic results.
Hence, Heureka prunes output channel trees to improve search
efficiency. It is, for example, unlikely that compiler heuristic
results would be returned deeply nested into a struct output
channel. Therefore, we apply a maximum depth to our channel
selection algorithm and allow at most a single dereference
along a path on an output channel tree before we stop looking.
Additionally, we have further backstops in place to rule out
unlikely output channels such as function pointers or the content
of arrays. We also skip over function parameters that are
marked as const in the original C++ code since those cannot
be modified by the function as dictated by the language syntax.
Furthermore, while recording original outputs for a channel
in the initial Prior search step (see Section III), we rule out
function reference or pointer parameters as output channels
that are never modified by observed target function executions.

V. EVALUATION

In this section, we describe the setup we use to tune LLVM
heuristics with Heureka for individual application targets and
present our findings. Additionally, we discuss specific functions
we identified as heuristics in the LLVM compiler that showed
high binary size savings and worked well for most of our
targeted applications.

A. Experimental Setup

In our evaluation, we aim to identify and tune heuristic
functions among the optimization passes of the LLVM Clang
compiler version 10.0.1. Specifically, we target the first eight

(a) Distribution of tuning targets identified per benchmark application. Bars
can include targets that are shared by one or more benchmarks.

(b) Maximum binary size reduction found during heuristic search relative
to -Oz baseline when considering single heuristics only. Overlaid circles
indicate all of the tuning targets we could identify for this benchmark at
their maximum observed binary size reduction.

Fig. 6. Distribution of tuning targets and corresponding binary size savings.

thousand functions from the Analysis and Transformation
passes [24] that can be found as code modules in the LLVM
source code directories llvm/lib/Transforms/ and llvm/lib

/Analysis/. This number is equivalent to roughly 2% of all
available functions in the LLVM Framework we considered
for our purposes. We ignore functions that are not interesting
to our study such as standard library functions, C functions,
destructors, main functions or functions with unknown types.
Our instrumentation uses a custom type system which is based
on LLVM’s internal type system. We support most common
types that are also supported by LLVM but not all of them yet,
e.g. vector types.

As an optimization objective, we chose the size of an
application binary generated by the Clang compiler, where
smaller means better. Specifically, we measure binary size
using the llvm-size tool [25] adding up its first two output
columns text and data when using the Berkley output format.
As our baseline, we consider the binary sizes generated by the
unmodified vanilla Clang compiler when setting it to its most
aggressive binary size reduction level with the -Oz flag.

Heureka requires tests to verify semantic correctness of opti-
mized applications, hence we chose the NAS and Polybench/C
benchmark suites [11], [12] which come with reference output
and correctness tests provided. We augmented available tests
with additional checks of output values and used all 38 available
applications for our experiments. To evaluate individual probes
when fitting Priors, we use an instrumented compiler (MLLVM).
We build object code from benchmark source files with a direct
clang -Oz -c call. We then link object files to a final binary
using an unmodified vanilla compiler (VLLVM). That means,

60



while building object files with Clang we modify the output of
instrumented functions in the applied code optimization passes
that are active for the -Oz flag.

The validation against a reference output for NAS bench-
marks is integrated into the benchmark source code. To avoid
modifying and thereby influencing the validation itself when
compiling a benchmark with MLLVM, we decoupled validation
code from benchmark code. The code to validate benchmark
results is kept in separate source files which are compiled
independently into object files using VLLVM. They are then
linked to a final benchmark binary together with the object
files which were compiled with MLLVM. For Polybench
benchmarks, we activate full result output to stdout with
POLYBENCH_DUMP_ARRAYS and compare it to a pre-recorded
reference. For all benchmarks, we use the smallest data sets
during execution since they are sufficient to measure binary
size and allow fast evaluations.

To further improve the validity and robustness of our results,
we minimize all benchmarks before we optimize their binary
size with Heureka. We use C-Vise which is a super-parallel
Python port of the C-Reduce source code minimizer [26], [27].
To guide minimization, we use an interestingness score that
follows the same benchmark validation and input data sets
we consider when fitting Priors during Heureka’s heuristic
search. In addition, we make sure that resource allocation
of file descriptors and memory is preserved using wrappers
around relevant STL functions such as malloc, free, open, etc.
Minimization increases the probability that our modifications
during compilation affect code that lies on the execution path
of the targeted application and that we are not reporting results
where code was merely dropped from irrelevant sections. Also,
it is more likely that faulty code modifications will be caught
during program execution and validation. NAS benchmark
binaries are with an average of 22 KB baselines after code
minimization generally larger than the Polybench benchmarks
with a 3 KB average.

Individual output channels for instrumented functions can
be evaluated independently of each other which allows us to
heavily parallelize and distribute this process to multiple nodes
of a compute cluster. The cluster used in this study consists
of approximately 8000 cores with up to 3 TB of memory per
node. The cluster uses the Univa Gridengine batch system [28]
on Scientific Linux 7. We were assigned a share of 400 cores
and 1.6 TB RAM for our study.

B. Application Optimization

Our first use case is to optimize individual applications by
identifying compiler tuning targets that achieve binary size
savings by themselves and in combination using a random
search approach. We present tuning results using two evaluation
approaches for each application. The first approach is to go
through all eight thousand target functions which include a
total of 150 thousand target channels and required over one
million probes to be executed to find fitting Priors. We call this
the Full Evaluation Set and run the Heureka heuristic search
over this set for each of our 38 benchmark applications in turn.

Using the Full Set, we suggested an average of 271 tuning
targets per benchmark (see Figure 6(a)). Most NAS benchmarks
(prefixed with N) have higher tuning target counts because they
have larger code bases than the smaller Polybench applications
(prefixed with P) and thus more optimization opportunities.
Figure 6(b) shows a breakdown of the maximum binary size
savings we could find for all benchmarks during the heuristic
search with an average of 7.7%. The height of the bar indicates
the maximum improvement we could observe while the circles
show individual tuning targets for that benchmark at their
maximum observed binary size reduction. While most binary
size reductions are only a fraction of a percent, we can find
some that go as high as 11.6%. We discuss specific examples
of high reward tuning targets in Section V-D.

The heuristic search does not try to find optimal output
values but only requires at least one probed value to improve
the objective in order to identify a heuristic (see Section II).
Its goal is to suggest heuristics and corresponding value ranges
for subsequent auto-tuning of the targeted application. Hence,
our random search tuning using suggested heuristics achieves
even higher savings (see Section V-E).

The Full Set only focuses on single applications and therefore
validates compiler modifications only for their application
target using the specified input set and validation methods we
described above including prior code minimization. Application
developers using this technique for their code can extend the
validation to increase their confidence in the validation results.
As an example, let’s consider P-cor which shows the highest
saving results of 11.6%. We looked at the binary that was
generated at the corresponding tuning point suggestion in more
detail to confirm Heureka’s validation and to apply further
analysis. All tests pass and the generated output is as expected
but valgrind points out memory leaks that do not exist in
the original application and were introduced by the tuning
process. The second highest successful tuning target for this
benchmark does not show memory leaks and achieves 8.4%.
In such cases, application developers can discard unwanted
heuristic suggestions (see Section V-D for a more detailed
discussion).

In our second evaluation approach, we aim to transfer
tuning target findings from existing results to previously unseen
applications. This way we can improve evaluation performance
and identify tuning targets and corresponding Priors that
generalize well to other applications. To do this, we combine
all successful tuning targets and Priors identified using the
Full Evaluation Set for individual applications to two new
evaluation sets, namely the Reduced Evaluation Set and the
Restricted Evaluation Set.

For the Reduced Set, we take a conservative approach and
generate the union of all tuning targets and Priors that showed
objective improvements. For the Restricted Set we only allow
safe tuning targets, i.e. targets that are identified for all of
the other applications, share the same Priors and showed
improvements for at least one of them. If a tuning target
was not used during compilation by some applications but
show required properties for others, we also consider it safe.

61



Fig. 7. Relative binary size reduction per application observed during heuristic
search when comparing the Full, Reduced and Restricted Evaluation Sets.

As described in Section IV, Heureka splits the data type of
an output channel into smaller byte ranges in case values
have been combined during compilation. Each of those byte
ranges is considered a channel. For the Restricted Set we
filter out unnecessary type splits. If objective improvements of
split channels are exactly the same, we keep only the widest
byte range. Additionally, we further prune output channels for
targeted functions that we consider to cover the same value
in the actual code. For example, when a function returns a
32-bit integer, we would break the channels down into specific
subregions of the byte range in case LLVM has combined
types (see Section IV). However, when we observe the same
objective improvements for all channels, we would only keep
the widest byte range.

We generate the Reduced and Restricted sets using cross-
validation by holding out an application at a time and combining
tuning target results for all of the others. We then look at the
results for a heuristic search considering only the targets in
the combination sets for the held-out application rather than
the Full Set with 150 thousand potential tuning targets. For a
held-out application, not all tuning targets in the combination
sets will be executed during compilation or manage to achieve
rewards. Also, we might miss out on some tuning targets that
only work for the new application and not for the ones we
have seen so far. However, the evaluation effort is significantly
reduced. On average the number of output channels that we
need to evaluate for each application drops to 1.1% for the
Reduced Set and 0.2% for the Restricted Set of what would be
required for the Full Set. Additionally, it allows us to identify
tuning targets that generalize well and can be provided to
compiler developers.

Figure 7 shows the maximum objective savings we were
able to observe for the Reduced and Restricted set during the
heuristic search and compares it to the Full Evaluation Set.
The Reduced Set results are the same for every benchmark
except N-is, N-CG and N-ep which had tuning targets in the
Full Set that showed high savings only for them. Due to hold-
out validation, those tuning targets are not considered. The
Restricted Set still manages to show good saving results for
most benchmarks with only a small drop in its average and
even achieves the same as for the Full Set for some. This
indicates that some of the tuning targets showing high savings
generalize well among all benchmarks.

C. Execution Time

(a) Heuristic search runtime on 400 core cluster when evaluation the Full
Set of functions for each application.

(b) Speedups of Reduced and Restricted Sets over runtime of the Full Sets
on the cluster for each application on a log scale.

(c) Heuristic search runtime on a single 72 core machine when evaluating
the Restricted Sets for each application.

Fig. 8. Execution time findings for heuristic discovery.

Heureka’s execution time depends on which Priors are used,
Prior search strategies, output channel pruning and how many
functions are considered. Also, the tool itself requires warm-
up to set up required resources and has synchronization and
bookkeeping overheads in addition to the compile and runtimes
of individual probes. Figure 8(a) shows the execution times
for individual applications when running them on our cluster.
Beyond this, most of the work Heureka does when evaluating
output channels is embarrassingly parallel. The average runtime
for our evaluation of eight thousand functions with Heureka
is five hours. We calculate Heureka runtime by adding up
measured compile and run times of individual probes during
the heuristic search. For combination set runtimes, we only
consider heuristics that remain after subsetting from the Full
Set. Figure 8(b) shows the speedup over the Full Set we would
see when running our combination sets on the cluster. Those
are on average 10x for the Reduced and 65x for the Restricted
Set. We ran the heuristic search for the Restricted Set of each
application on a single machine with 72 cores and 504 GB

62



of memory (see Figure 8(c)) and achieved an average runtime
of a little under an hour. Comparing our average runtime
for distributed execution of the Restricted set on the cluster
to the measurements on the single machine, we observe a
speedup of 30x over running the Full Set if normalized to
single core performance. Cluster speedups are likely higher
due to differences in utilizing existing compute power since
we ran individual applications interleaved on the cluster and
one after the other on the single machine. When only a few
targets were left to explore for a single application, the cluster
could execute other applications in parallel while the single
machine would wait for them to finish first. Additionally, the
random elements in the heuristic search while fitting Priors
can affect the outcome duration.

D. Compiler Optimization

Besides the optimization of individual applications, we
looked at a second use case for Heureka which is providing
heuristics to compiler developers that generalized well for our
benchmarks and showed high objective savings. We looked
in detail at some of the tuning targets of the Restricted Set
over all applications and manually investigated how exactly
objective savings were achieved. We generally observe four
categories of suggestions for heuristic tuning targets made
by Heureka and aim to discuss examples for each in this
section. There are many more and we provide full results for
compiler developers to go through in our online repository at
https://github.com/bfranke1973/Heureka.git.

Obvious Heuristic Obvious heuristics can quickly be identi-
fied as such by looking at the source code of the corresponding
function. Compiler developers can pick them up and directly
use our provided instrumentation and value ranges to apply
their own tuning. An example is the function getInlineCost

in the module llvm/lib/Analysis/InlineCost.cpp which
calculates a cost for inlining a given function call. Heureka
suggests this function and can fit a Prior for the InlineCost

return value.
Indirect Heuristic An indirect heuristic is a tuning target

suggested by Heureka where the corresponding function
is not immediately recognizable as a heuristic or was not
even designed to be one. However, modifying its output
values can positively affect the objective in a subsequent
optimization. A good example is the function bool CallBase::

isNoBuiltin in SimplifyLibCalls.cpp. The targeted output
channel is the bool return value and the corresponding Prior
is a simple Boolean Prior. The function generalizes well:
All applications execute it, Heureka could fit the Boolean
Prior for all of them, and found binary size savings as high
as 7.9% for most. According to the source code [10], the
function indicates for a Call Instruction if the corresponding
call is to a built-in library function or not. It is used by
the function optimizeCall in the class LibCallSimplifier

which replaces calls to library functions with a more optimal
form, for example, it replaces printf("Hello!") with puts

("Hello!"). If the function returns false, the replacement of
library functions for printf with fwrite and fputc does not

happen and the corresponding binary is smaller since fewer
function headers are included. We could connect other tuning
targets to similar effects such as sanitizeFunctionName and
dropLLVMManglingEscape from TargetLibraryInfo.cpp.

Heureka can suggest multiple indirect heuristics that are
called in succession to ultimately affect the same optimization.
Compiler developers can use these suggestions directly or as
indicators to find where tuning can be applied most efficiently.
We plan to extend our system to consider such call chains
and help compiler developers to make the best choice for their
tuning efforts.

Data Field Heuristic We discovered that some tuning targets
refer to the this argument of an object’s member function.
Heureka treats the this argument as a struct output channel
and tries to find Priors for its individual fields. For those
suggestions, the tuning target is not the output of a function
but a data field in its corresponding object instance. This
also means that Heureka is able to track and modify side-
effects of functions that affect an object’s state. An example
is the constructor of CFGSimplifyPass in module llvm/lib

/Transforms/Scalar/SimplifyCFGPass.cpp which is a pass
to simplify the control flow graph of a function. Heureka
finds that binary size can be reduced if changing the object
field this->Options.BonusInstThreshold. The Options field
holds parameters that are used to control transformations
performed by the pass. The modified threshold affects the
combination of basic blocks and thereby code size.

Unsafe Heuristic Some suggested heuristics are not safe
to use and potentially generate incorrect binaries that are not
detected by the test set used during the differential testing.
An example is the tuning target responsible for the 11.6%
binary size reduction of the P-cor benchmark discussed in
Section V-B. The corresponding function in the compiler is
bool getLibFunc(StringRef funcName, LibFunc &F) from
the module TargetLibraryInfo.cpp. It searches for a library
function name and can lead to savings in a similar way as
described for the isNoBuiltin function. Heureka finds that
multiple output channels can be manipulated to achieve binary
size savings. Those are the bool return value, the size of
the StringRef argument funcName, or via the enum argument
LibFunc. Modifying the first two is safe and causes no problems
in the generated binary. Modifying the enum argument, however,
can lead to the removal of free calls which causes memory
leaks and is therefore an unsafe suggestion. We discovered this
when we evaluated suggested tuning targets in more detail by
running generated binaries with valgrind and inspecting LLVM
bit code.

If the introduced memory leaks are problematic for the
application, the tuning target modifying the LibFunc argument
should not be used. However, if the operating system is
sufficient to clean up the memory that was left allocated, the
extra binary size savings might be worth using the suggested
target after all. To improve the suggestions made by the
heuristic search, a valgrind analysis can be added to the
differential testing of each probed value.

63



Fig. 9. Relative binary size reduction when combining multiple tuning targets
for the Full Evaluation Set using a random search approach.

E. Random Search Tuning

Heureka’s heuristic search is only the first step when tuning
applications. Here we automatically identify heuristics in the
compiler source code and fit Priors to determine acceptable
output value ranges (see Section II). During this process,
functions are only accepted as tuning targets if we can fit
a Prior and they show objective improvements for at least
one modified output. This way, we already find improved
binary sizes for a tested application as soon as we accept a
tuning target. Heureka’s value space exploration and heuristic
discovery, however, is optimized for efficiently fitting Prior
parameters, not for finding the most optimal output modification.
Also, it only considers a single tuning target at a time.

Next, we randomly combine multiple tuning targets in
an attempt to stack objective savings. Specifically, to tune
an application, we create a Random Tuning Profile (RTP)
where we randomly select a collection from a range of tuning
targets that individually showed successful improvements for
this application during the initial search. We then randomly
select a fitted Prior for each of the selected tuning targets
(a single tuning target can have more than one fitting Prior).
We instrument the compiler according to the targets in the
RTP and use it to compile the targeted application. Every time
an instrumented function is executed, we randomly select an
output value from the corresponding Prior’s value range. Using
this technique, we can boost some binary size savings beyond
our results for single tuning targets only.

Figure 9 shows the binary size improvements we achieve
when randomly combining the tuning targets for the Full
Evaluation Set compared to our results for single tuning targets
from Figure 6(b). For some applications like N-cg and P-cor
we managed to gain significant improvements of up to 19.5%
over the highest savings observed for single tuning targets
only during the heuristic search. For others, we found no
improvements or stayed below our previous results. Due to
limited resource availability, the random search experiment we
ran only considered roughly 6400 search points per applications
which is a small number compared to the large search space
we looked through. On our cluster this took roughly 2-3 hours
per application. Nevertheless, the results show that Heureka’s
suggested heuristics and value ranges can be used by auto-
tuning tools to improve optimization objectives. Additionally,

we demonstrate that the effects of multiple tuning targets can
be stacked to boost binary size savings beyond what is possible
with individual heuristics alone.

VI. RELATED WORK

No prior work has ever attempted to automatically discover
and exploit heuristics in systems software. Ours is the first to
do so. Tuning heuristics, in particular for compilers, is a rich
field targeted by many authors [5]–[7], [9], [29]–[33]. Using
machine learning models to do so is becoming more and more
popular among compiler developers as reviewed recently by
Wang and O’Boyle [34] and Leather and Cummins [35].

Trofin et al. [5] introduce a framework to replace heuristics
in compilers with a reinforcement learning (RL) approach. They
evaluate their method against a case study in which they target
inlining heuristics of the LLVM framework. They achieve
an average of 7% improvement over an -Oz baseline. Like
Trofin, Haj-Ali et al. [9] use RL to optimize loop vectorisation
heuristics to improve the existing cost model used in LLVM.
Stephenson et al. [29] identify priority or cost functions as a
crucial part of individual compiler optimizations. They propose
a genetic programming approach which automatically optimizes
a set of compiler heuristics by iteratively searching for priority
functions which improve the execution time of generated
binaries. Similarly, Cavazos et al. [36] and Kulkarni et al. [7]
use genetic algorithms to optimize inlining heuristics for just-
in-time compilation in Java virtual machines. Moss et al. [31]
and later Mendis et al. [32] replace traditional analytical models
with supervised learning techniques and use them to predict the
throughput of instructions in a basic block in the instruction
selection phase of a compiler. Hollenbeck et al. [37] manually
select and parameterize twelve constant values from the Haskell
GHC compiler. They modify them by randomly sampling
configurations from a uniform and a normal distribution
resembling our Priors to improve the inlining optimization.
All of the studies above show improvements for the compiler
heuristics they have chosen to tune or replace with an ML
approach but their selection of which heuristics to target in the
first place is done manually. Our method, on the other hand, is
able to find and parameterize high value targets automatically,
even non-obvious ones.

Differential Testing [17] is an efficient technique to auto-
matically process and evaluate a large number of test cases
against different versions of the same program or similar
programs. It has been successfully used by multiple research
studies on exposing bugs in compilers to drive large testing
efforts [38]–[41]. In a compiler fuzzing study, Yang et al. [41]
employ a Differential Testing approach to expose compiler
bugs. They automatically generate a large number of tests by
sampling a probabilistic grammar which covers a subset of the
C programming language. Cummins et al. [40] later improve
upon their test generation method by using a deep learning
model which they train on hand written code mined from open
source GitHub repositories. Similar to our study, they also
make use of Differential Testing techniques to automatically
evaluate the test outcome of their generated program code.

64



VII. CONCLUSION AND FUTURE WORK

In this study we introduce Heureka, a framework to fully
automatically search through the LLVM compiler and find
heuristics encapsulated into functions. Using a Differential
Testing approach, we fit function image templates, aka. Priors,
to approximate the output value range of targeted heuristic
functions. If we can fit a Prior to a function’s output channel and
observe at least one value that shows objective improvements,
we suggest the output channel as a tuning target. With Heureka
we evaluate eight thousand functions from the LLVM OPT
source code and identify tuning targets to serve two use
cases: Firstly, to tune individual applications and secondly
to find promising heuristics in the compiler for further manual
examination and optimization. We heavily tune the binary size
of single applications and achieve 7.7% reduction on average
compared to an -Oz baseline for single tuning targets and
up to 19.5% when combining the effects of multiple targets
using a random search. Secondly, we report heuristic entries
from the strictest tuning target subset which generalize well and
show high improvements for most of the evaluated applications.
They are intended to be picked up by compiler developers for
evaluation and integration.

For our future work, we plan to introduce more sophisticated
Priors capable of picking up on more complex heuristics by
considering output and input values. Also, our current Priors
aim at individual output channels and do not yet consider
interdependences between them. In this work, we have focused
on reducing the binary size of generated binaries. Heureka can,
however, target different optimization objectives like application
runtime. We plan to evaluate benchmarks for runtime and
combinations of runtime and binary size. We want to expand
upon our initial approach of stacking individual tuning targets
by replacing the random search with a more powerful technique,
such as reinforcement learning. Heureka can be adapted to
suggest heuristics for any program and desired optimization
goal as long as a range of test cases is available. We plan
to target other systems to uncover potential heuristics, like
operating systems or SQL engines. Lastly, in this study, we
target only heuristics encapsulated into functions which is
certainly not always the case. Different call sites of the same
function might benefit in different ways from heuristic output
and can be treated as different heuristics. An even more fine-
grained approach would be to consider individual assignments
as heuristic outputs. Every time a value is assigned in the code,
we can potentially hook in and tune it. We intend to tackle
this generalized approach in our future work.

REFERENCES

[1] A. F. d. Silva, B. N. B. de Lima, and F. M. Q. Pereira, “Exploring
the space of optimization sequences for code-size reduction: insights
and tools,” in Proceedings of the 30th ACM SIGPLAN International
Conference on Compiler Construction, ser. CC 2021. New York, NY,
USA: Association for Computing Machinery, Feb. 2021, pp. 47–58.
[Online]. Available: https://doi.org/10.1145/3446804.3446849

[2] G. G. Fursin, M. F. P. O’Boyle, and P. M. W. Knijnenburg, “Evaluating
Iterative Compilation,” in Languages and Compilers for Parallel
Computing, ser. Lecture Notes in Computer Science, B. Pugh and C.-W.

Tseng, Eds. Berlin, Heidelberg: Springer, 2005, pp. 362–376. [Online].
Available: https://doi.org/10.1007/11596110 24

[3] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August,
“Compiler optimization-space exploration,” in International Symposium
on Code Generation and Optimization, 2003. CGO 2003., 2003, pp.
204–215. [Online]. Available: ttps://doi.org/10.1109/CGO.2003.1191546

[4] K. D. Cooper, D. Subramanian, and L. Torczon, “Adaptive
Optimizing Compilers for the 21st Century,” The Journal of
Supercomputing, vol. 23, no. 1, pp. 7–22, Aug. 2002. [Online]. Available:
https://doi.org/10.1023/A:1015729001611

[5] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and
D. Li, “MLGO: a Machine Learning Guided Compiler Optimizations
Framework,” arXiv:2101.04808 [cs], Jan. 2021, arXiv: 2101.04808.
[Online]. Available: http://arxiv.org/abs/2101.04808

[6] K. Hoste and L. Eeckhout, “Cole: compiler optimization level
exploration,” in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, ser. CGO ’08. New
York, NY, USA: Association for Computing Machinery, Apr. 2008, pp.
165–174. [Online]. Available: https://doi.org/10.1145/1356058.1356080

[7] S. Kulkarni, J. Cavazos, C. Wimmer, and D. Simon, “Automatic
construction of inlining heuristics using machine learning,” in
Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), Feb. 2013, pp. 1–12. [Online].
Available: https://doi.org/10.1109/CGO.2013.6495004

[8] M. Stephenson and S. Amarasinghe, “Predicting unroll factors
using supervised classification,” in International Symposium on Code
Generation and Optimization, Mar. 2005, pp. 123–134. [Online].
Available: https://doi.org/10.1109/CGO.2005.29

[9] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic,
and I. Stoica, “NeuroVectorizer: end-to-end vectorization with deep
reinforcement learning,” in Proceedings of the 18th ACM/IEEE
International Symposium on Code Generation and Optimization, ser.
CGO 2020. New York, NY, USA: Association for Computing
Machinery, Feb. 2020, pp. 242–255. [Online]. Available: https:
//doi.org/10.1145/3368826.3377928

[10] LLVM, “Llvm source project,” 2022. [Online]. Available: https:
//github.com/llvm/llvm-project

[11] D. H. Bailey, “NAS Parallel Benchmarks,” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Boston, MA: Springer US, 2011, pp. 1254–
1259. [Online]. Available: https://doi.org/10.1007/978-0-387-09766-4
133

[12] L.-N. Pouchet and S. Grauer-Gray, “Polybench: The polyhedral
benchmark suite.(2012),” 2012. [Online]. Available: http://web.cs.ucla.
edu/∼pouchet/software/polybench/

[13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. New York, NY,
USA: Association for Computing Machinery, Jun. 2013, pp. 519–530.
[Online]. Available: https://doi.org/10.1145/2491956.2462176

[14] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: an extensible
framework for program autotuning,” in Proceedings of the 23rd
international conference on Parallel architectures and compilation,
ser. PACT ’14. New York, NY, USA: Association for Computing
Machinery, Aug. 2014, pp. 303–316. [Online]. Available: https:
//doi.org/10.1145/2628071.2628092

[15] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather, “Minimizing
the cost of iterative compilation with active learning,” in 2017
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), Feb. 2017, pp. 245–256. [Online]. Available:
https://doi.org/10.1109/CGO.2017.7863744

[16] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions,” Jun. 2018, arXiv:1802.04730 [cs]. [Online].
Available: http://arxiv.org/abs/1802.04730

[17] W. M. McKeeman, “Differential Testing for Software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available:
https://doi.org/10.1145/780822.781141

[18] G. Alvarez, “App size matters I,” May 2020, section: Technology.
[Online]. Available: https://www.farfetchtechblog.com/en/blog/post/
app-size-matters-i/

65



[19] K. Beladiya, “9 Ways to Reduce Android App Size During
Android App Development,” Jan. 2022. [Online]. Available: https:
//theonetechnologies.com/blog/post/5-ways-to-reduce-android-app-size

[20] S. Tolomei, “Shrinking APKs, growing installs,” Nov.
2017. [Online]. Available: https://medium.com/googleplaydev/
shrinking-apks-growing-installs-5d3fcba23ce2

[21] E. Camber, “Size matters: How your app size is costing you customers,”
Nov. 2018. [Online]. Available: https://medium.com/pixplicity/
size-matters-how-your-app-size-is-costing-you-customers-6121d6db74e

[22] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards
a holistic approach to auto-parallelization: integrating profile-driven
parallelism detection and machine-learning based mapping,” ACM
SIGPLAN Notices, vol. 44, no. 6, pp. 177–187, Jun. 2009. [Online].
Available: https://doi.org/10.1145/1543135.1542496

[23] A. Maramzin, C. Vasiladiotis, R. C. Lozano, M. Cole, and B. Franke,
““It looks like you’re writing a parallel loop”: a machine learning based
parallelization assistant,” in Proceedings of the 6th ACM SIGPLAN
International Workshop on AI-Inspired and Empirical Methods for
Software Engineering on Parallel Computing Systems, ser. AI-SEPS 2019.
New York, NY, USA: Association for Computing Machinery, Oct. 2019,
pp. 1–10. [Online]. Available: https://doi.org/10.1145/3358500.3361567

[24] LLVM, “LLVM’s Analysis and Transform Passes — LLVM 13
documentation,” 2022. [Online]. Available: https://llvm.org/docs/Passes.
html

[25] ——, “llvm-size - print size information — LLVM 13 documentation,”
2022. [Online]. Available: https://llvm.org/docs/CommandGuide/
llvm-size.html

[26] M. Liška, “C-Vise: Super-parallel python port of c-reduce,” Aug. 2022.
[Online]. Available: https://github.com/marxin/cvise

[27] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,
“Test-case reduction for C compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: Association for
Computing Machinery, Jun. 2012, pp. 335–346. [Online]. Available:
https://doi.org/10.1145/2254064.2254104

[28] Altair, “Distributed Resource Management and Optimization | Altair Grid
Engine,” 2021. [Online]. Available: https://www.altair.com/grid-engine/

[29] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta
optimization: improving compiler heuristics with machine learning,”
ACM SIGPLAN Notices, vol. 38, no. 5, pp. 77–90, May 2003. [Online].
Available: https://doi.org/10.1145/780822.781141

[30] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-
to-End Deep Learning of Optimization Heuristics,” in 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2017, pp. 219–232. [Online]. Available:
https://doi.org/10.1109/PACT.2017.24

[31] J. E. B. Moss, P. E. Utgoff, J. Cavazos, D. Precup, D. Stefanovic,
C. E. Brodley, and D. Scheeff, “Learning to schedule straight-
line code,” in NIPS, 1997, pp. 929–935. [Online]. Available:
http://papers.nips.cc/paper/1349-learning-to-schedule-straight-line-code

[32] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks,” arXiv:1808.07412 [cs, stat], May 2019, arXiv:
1808.07412. [Online]. Available: http://arxiv.org/abs/1808.07412

[33] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning Memory Access Patterns,”
in Proceedings of the 35th International Conference on Machine
Learning. PMLR, Jul. 2018, pp. 1919–1928, iSSN: 2640-3498. [Online].
Available: https://proceedings.mlr.press/v80/hashemi18a.html

[34] Z. Wang and M. O’Boyle, “Machine Learning in Compiler Optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901, Nov.
2018, conference Name: Proceedings of the IEEE. [Online]. Available:
https://doi.org/10.1109/JPROC.2018.2817118

[35] H. Leather and C. Cummins, “Machine Learning in Compilers: Past,
Present and Future,” in 2020 Forum for Specification and Design
Languages (FDL), Sep. 2020, pp. 1–8, iSSN: 1636-9874. [Online].
Available: https://doi.org/10.1109/FDL50818.2020.9232934

[36] J. Cavazos and M. O’Boyle, “Automatic Tuning of Inlining
Heuristics,” in SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, Nov. 2005, pp. 14–14. [Online]. Available:
https://doi.org/10.1109/SC.2005.14

[37] C. Hollenbeck, M. F. P. O’Boyle, and M. Steuwer, “Investigating
magic numbers: improving the inlining heuristic in the Glasgow
Haskell Compiler,” in Proceedings of the 15th ACM SIGPLAN
International Haskell Symposium, ser. Haskell 2022. New York, NY,
USA: Association for Computing Machinery, Sep. 2022, pp. 81–94.
[Online]. Available: https://doi.org/10.1145/3546189.3549918

[38] F. Sheridan, “Practical testing of a C99 compiler using output comparison,”
Software: Practice and Experience, vol. 37, no. 14, pp. 1475–1488, 2007,

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.812. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.812

[39] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do
about it,” in Proceedings of the 8th ACM international conference
on Embedded software, ser. EMSOFT ’08. New York, NY, USA:
Association for Computing Machinery, Oct. 2008, pp. 255–264. [Online].
Available: https://doi.org/10.1145/1450058.1450093

[40] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2018. New York, NY, USA: Association for
Computing Machinery, Jul. 2018, pp. 95–105. [Online]. Available:
https://doi.org/10.1145/3213846.3213848

[41] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in C compilers,” in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’11. New York, NY, USA: Association for
Computing Machinery, Jun. 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

66


