

Compiler and Architecture Design Group Institute for Computing Systems Architecture University of Edinburgh, United Kingdom



#### Measuring QoE of Interactive Workloads and Characterising Frequency Governors on Mobile Devices

**IISWC 2014** 

Volker Seeker

Pavlos Petoumenos, Hugh Leather, Björn Franke

## Problem Statement



## Workload Scenario



#### Frequency Governor

0.3 GHz

1.2 GHz

2.2 GHz

## Workload Scenario

0.3 GHz



**1.2 GHz** 

2.2 GHz

Frequency Governor

How do we find the sweet spot?

Consider the User's Perspective !

Questionaires are cost intensive

## What we need!



## What Does The User Care About?



## Research Goals



Rate Trade-Off considering User Satisfaction



Methodology must ...

- ... deal with interactive workloads
- ... execute repeatable workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

Not possible with current mobile benchmarks!

## Executing Mobile Workloads



## Automatic Workload Execution

| हिंग 👼    |            |              | 🛪 📗 9:52     |
|-----------|------------|--------------|--------------|
| Google    |            |              | Ŷ            |
|           |            |              |              |
|           | -          | 💕 🚳<br>💿 🛩   |              |
| Pulse     | Facebook   | Logo Quiz    | Workload Mor |
|           | - =        | 0            |              |
| Downloads | Calculator | Email        | Play Store   |
| <b>N</b>  |            | Children M   |              |
| Gmail     | Gallery    | Movie Studio | Videos       |
| -         | 8          | <b>S</b> +   | 0            |
| Photos    | Google     | Google+      | Music        |
|           |            |              |              |
| 6         |            |              |              |
| ~         |            |              |              |

## Research Goals



Rate Trade-Off considering User Satisfaction



Methodology must ...

- ... deal with interactive workloads •
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

## Considering the User's Perspective Concept



## Interaction Lag Markup

#### 1104 Frames

#### 22 Lags



## Markup Costs

Markup lags in each video manually

Markup Time: 360 hours or 9 working weeks

#### Workload

10 Minutes Length
17 System Configurations
5 Iterations
→ 85 Videos

 $\bigcirc$  $\bigcirc$ O 

## Markup Costs

Markup lags in each video manually

Markup Time: 1800 hours or 1 working year

**5 Workloads** 10 Minutes each

17 System Configurations 5 Iterations

→ 425 Videos



## Reusing a Video Markup

#### Images of Lag Endings



## Dealing with Non-Determinism



Mask out non deterministic areas to compare images.

## Markup Costs

Find Lag Endings in a single video of the recorded workload.

#### Still requires 5 hours of manual work

Speedup of 85x

#### Workload

10 Minute Workload
17 System Configurations
5 Iterations
→ 85 Videos



## Finding Potential Lag Endings

**Potential End Frames** 

Previous Input



3 4 Albums Albums 6 5 8 Pictures Pictures End time Albums Albums

Volker Seeker

Pick a lag ending from a selection of potential ending frames rather than looking at every single one.

Looking at 8 rather than 191

Next Input



## Markup Costs

Pick lag endings from suggested selection.

16:02 Minutes Manual Markup Work

Speedup of 1347x

#### Workload

10 Minute Workload
17 System Configurations
5 Iterations
→ 85 Videos



## Research Goals



Rate Trade-Off considering User Satisfaction



Methodology must ...

- ... deal with interactive workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

## User Irritation Metric



Lag ending of system configuration x

#### **Calculate User Irritation**

- Set a user irritation threshold for each lag
- If the length of a lag stays below the threshold, it counts as not irritating
- If the length of a lag exceeds the threshold, a penalty is applied

Compare different system configurations in terms of user irritation

## Irritation Thresholds



Setting Thresholds per lag in a workload





Threshold Policy

## Irritation Thresholds



Setting Thresholds per lag in a workload





Threshold Policy

## Research Goals



Rate Trade-Off considering User Satisfaction



Methodology must ...

- ... deal with interactive workloads
- ... execute **repeatable** workloads
- ... execute workloads automatically
- ... identify interaction lags
- ... automatically rate user satisfaction

#### Final Methodology **Ending Images** Execute **Pick** lag prerecorded Run endings from mobile workload suggested once and capture a selection video Execute Compare lag prerecorded **Detect** lag lengths to Run mobile workload endings using different system arbitrary annotations and capture a configurations video number

of times

## Frequency Governor Case Study

## How close are Linux governors to the sweet spot?

# Qualcomm Dragonboard 8074 Snapdragon 800 Processor 4.3" qHD 540x960 LCD Android 4.3 Jelly Bean



#### **Linux Governors**

- Conservative
- Interactive
- Ondemand

## Workload Input Classification



## Lag Length of each Lag for Ondemand



## Lag Length of each Lag for all Frequency Configurations and Governors



Frequency Configuration in GHz

## User Irritation



Irritation Threshold

110% of the lag length of the fastest frequency

→ Everything below this threshold does not count as irritating

#### **Oracle Governor**

Assume for each lag the lowest frequency that is still below the irritation threshold

Assume the least energy consuming frequency for all other periods.

## **Energy Consumption**



**Power Model** Run a CPU intensive artificial micro benchmark with each available frequency fixed.

Calculate average power for each frequency and subtract idle state power.

## Energy and User Irritation



## Energy and User Irritation

D



## Summary and Future Work



- Automation of proposed method to a high degree (1347x speedup)
- Demonstration of method feasibility for standard frequency governors compared to an oracle (up to 22% less energy)

#### **Future Work**

- Apply methodology to big.LITTLE type heterogeneous processors
- Integrate methodology into OS to make live decisions